Source code for gmtpy

'''A Python interface to GMT.'''

#    Copyright 2009 Sebastian Heimann
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import subprocess
from cStringIO import StringIO
import re
import os
import sys
import shutil
from itertools import izip
from os.path import join as pjoin
import tempfile
import random
import logging
import math
import numpy as num
import copy
from select import select

def import_pycdf():
    try:
        import pycdf as cdf
    except ImportError:
        raise ImportError,"Module pycdf is required to handle GMT grd files."
    return cdf 

def escape_shell_arg(s):
    '''This function should be used for debugging output only - it could be insecure.'''
    
    if re.search(r'[^a-zA-Z0-9._/=-]', s):
        return "'" + s.replace("'", "'\\''") + "'"
    else:
        return s

def escape_shell_args(args):
    '''This function should be used for debugging output only - it could be insecure.'''
    
    return ' '.join([escape_shell_arg(x) for x in args])


golden_ratio   = 1.61803

# units in points
_units = { 'i':72., 'c':72./2.54, 'm':72.*100./2.54, 'p':1. }
inch = _units['i']
cm = _units['c']

# some awsome colors
tango_colors = {
'butter1': (252, 233,  79),
'butter2': (237, 212,   0),
'butter3': (196, 160,   0),
'chameleon1': (138, 226,  52),
'chameleon2': (115, 210,  22),
'chameleon3': ( 78, 154,   6),
'orange1': (252, 175,  62),
'orange2': (245, 121,   0),
'orange3': (206,  92,   0),
'skyblue1': (114, 159, 207),
'skyblue2': ( 52, 101, 164),
'skyblue3': ( 32,  74, 135),
'plum1': (173, 127, 168),
'plum2': (117,  80, 123),
'plum3': ( 92,  53, 102),
'chocolate1': (233, 185, 110),
'chocolate2': (193, 125,  17),
'chocolate3': (143,  89,   2),
'scarletred1': (239,  41,  41),
'scarletred2': (204,   0,   0),
'scarletred3': (164,   0,   0),
'aluminium1': (238, 238, 236),
'aluminium2': (211, 215, 207),
'aluminium3': (186, 189, 182),
'aluminium4': (136, 138, 133),
'aluminium5': ( 85,  87,  83),
'aluminium6': ( 46,  52,  54)
}

graph_colors = [ tango_colors[_x] for _x in ('scarletred2', 'skyblue3', 'chameleon3', 'orange2', 'plum2', 'chocolate2', 'butter2') ]

[docs]def color(x=None): '''Generate a string for GMT option arguments expecting a color. If `x` is None, a random color is returned. If it is an integer, the corresponding ``gmtpy.graph_colors[x]`` or black returned. If it is a string and the corresponding ``gmtpy.tango_colors[x]`` exists, this is returned, or the string is passed through. If `x` is a tuple, it is transformed into the string form which GMT expects. ''' if x is None: return '%i/%i/%i' % [ random.randint(0,255) for _x in 'rgb' ] if isinstance(x,int): if 0 <= x < len(graph_colors): return '%i/%i/%i' % graph_colors[x] else: return '0/0/0' elif isinstance(x,str): if x in tango_colors: return '%i/%i/%i' % tango_colors[x] else: return x return '%i/%i/%i' % x
[docs]def color_tup(x=None): if x is None: return tuple( [ random.randint(0,255) for _x in 'rgb' ] ) if isinstance(x,int): if 0 <= x < len(graph_colors): return graph_colors[x] else: return (0,0,0) elif isinstance(x,str): if x in tango_colors: return tango_colors[x] return x
_gmt_installations = {} # Set fixed installation(s) to use... # (use this, if you want to use different GMT versions simultaneously.) #_gmt_installations['4.2.1'] = { 'home': '/sw/etch-ia32/gmt-4.2.1', # 'bin': '/sw/etch-ia32/gmt-4.2.1/bin' } #_gmt_installations['4.3.0'] = { 'home': '/sw/etch-ia32/gmt-4.3.0', # 'bin': '/sw/etch-ia32/gmt-4.3.0/bin' } #_gmt_installations['4.3.1'] = { 'home': '/sw/share/gmt', # 'bin': '/sw/bin' } # ... or let GmtPy autodetect GMT via $PATH and $GMTHOME def cmp_version(a,b): ai = [ int(x) for x in a.split('.') ] bi = [ int(x) for x in b.split('.') ] return cmp(ai, bi) def newest_installed_gmt_version(): return sorted(_gmt_installations.keys(), cmp=cmp_version)[-1] # To have consistent defaults, they are hardcoded here and should not be changed. _gmt_defaults_by_version = {} _gmt_defaults_by_version['4.2.1'] = r''' # # GMT-SYSTEM 4.2.1 Defaults file # #-------- Plot Media Parameters ------------- PAGE_COLOR = 255/255/255 PAGE_ORIENTATION = portrait PAPER_MEDIA = a4+ #-------- Basemap Annotation Parameters ------ ANNOT_MIN_ANGLE = 20 ANNOT_MIN_SPACING = 0 ANNOT_FONT_PRIMARY = Helvetica ANNOT_FONT_SIZE = 12p ANNOT_OFFSET_PRIMARY = 0.075i ANNOT_FONT_SECONDARY = Helvetica ANNOT_FONT_SIZE_SECONDARY = 16p ANNOT_OFFSET_SECONDARY = 0.075i DEGREE_SYMBOL = ring HEADER_FONT = Helvetica HEADER_FONT_SIZE = 36p HEADER_OFFSET = 0.1875i LABEL_FONT = Helvetica LABEL_FONT_SIZE = 14p LABEL_OFFSET = 0.1125i OBLIQUE_ANNOTATION = 1 PLOT_CLOCK_FORMAT = hh:mm:ss PLOT_DATE_FORMAT = yyyy-mm-dd PLOT_DEGREE_FORMAT = +ddd:mm:ss Y_AXIS_TYPE = hor_text #-------- Basemap Layout Parameters --------- BASEMAP_AXES = WESN BASEMAP_FRAME_RGB = 0/0/0 BASEMAP_TYPE = plain FRAME_PEN = 1.25p FRAME_WIDTH = 0.075i GRID_CROSS_SIZE_PRIMARY = 0i GRID_CROSS_SIZE_SECONDARY = 0i GRID_PEN_PRIMARY = 0.25p GRID_PEN_SECONDARY = 0.5p MAP_SCALE_HEIGHT = 0.075i TICK_LENGTH = 0.075i POLAR_CAP = 85/90 TICK_PEN = 0.5p X_AXIS_LENGTH = 9i Y_AXIS_LENGTH = 6i X_ORIGIN = 1i Y_ORIGIN = 1i UNIX_TIME = FALSE UNIX_TIME_POS = -0.75i/-0.75i #-------- Color System Parameters ----------- COLOR_BACKGROUND = 0/0/0 COLOR_FOREGROUND = 255/255/255 COLOR_NAN = 128/128/128 COLOR_IMAGE = adobe COLOR_MODEL = rgb HSV_MIN_SATURATION = 1 HSV_MAX_SATURATION = 0.1 HSV_MIN_VALUE = 0.3 HSV_MAX_VALUE = 1 #-------- PostScript Parameters ------------- CHAR_ENCODING = ISOLatin1+ DOTS_PR_INCH = 300 N_COPIES = 1 PS_COLOR = rgb PS_IMAGE_COMPRESS = none PS_IMAGE_FORMAT = ascii PS_LINE_CAP = round PS_LINE_JOIN = miter PS_MITER_LIMIT = 0 PS_VERBOSE = FALSE GLOBAL_X_SCALE = 1 GLOBAL_Y_SCALE = 1 #-------- I/O Format Parameters ------------- D_FORMAT = %lg FIELD_DELIMITER = tab GRIDFILE_SHORTHAND = FALSE GRID_FORMAT = nf INPUT_CLOCK_FORMAT = hh:mm:ss INPUT_DATE_FORMAT = yyyy-mm-dd IO_HEADER = FALSE N_HEADER_RECS = 1 OUTPUT_CLOCK_FORMAT = hh:mm:ss OUTPUT_DATE_FORMAT = yyyy-mm-dd OUTPUT_DEGREE_FORMAT = +D XY_TOGGLE = FALSE #-------- Projection Parameters ------------- ELLIPSOID = WGS-84 MAP_SCALE_FACTOR = default MEASURE_UNIT = inch #-------- Calendar/Time Parameters ---------- TIME_FORMAT_PRIMARY = full TIME_FORMAT_SECONDARY = full TIME_EPOCH = 2000-01-01T00:00:00 TIME_IS_INTERVAL = OFF TIME_INTERVAL_FRACTION = 0.5 TIME_LANGUAGE = us TIME_SYSTEM = other TIME_UNIT = d TIME_WEEK_START = Sunday Y2K_OFFSET_YEAR = 1950 #-------- Miscellaneous Parameters ---------- HISTORY = TRUE INTERPOLANT = akima LINE_STEP = 0.01i VECTOR_SHAPE = 0 VERBOSE = FALSE''' _gmt_defaults_by_version['4.3.0'] = r''' # # GMT-SYSTEM 4.3.0 Defaults file # #-------- Plot Media Parameters ------------- PAGE_COLOR = 255/255/255 PAGE_ORIENTATION = portrait PAPER_MEDIA = a4+ #-------- Basemap Annotation Parameters ------ ANNOT_MIN_ANGLE = 20 ANNOT_MIN_SPACING = 0 ANNOT_FONT_PRIMARY = Helvetica ANNOT_FONT_SIZE_PRIMARY = 12p ANNOT_OFFSET_PRIMARY = 0.075i ANNOT_FONT_SECONDARY = Helvetica ANNOT_FONT_SIZE_SECONDARY = 16p ANNOT_OFFSET_SECONDARY = 0.075i DEGREE_SYMBOL = ring HEADER_FONT = Helvetica HEADER_FONT_SIZE = 36p HEADER_OFFSET = 0.1875i LABEL_FONT = Helvetica LABEL_FONT_SIZE = 14p LABEL_OFFSET = 0.1125i OBLIQUE_ANNOTATION = 1 PLOT_CLOCK_FORMAT = hh:mm:ss PLOT_DATE_FORMAT = yyyy-mm-dd PLOT_DEGREE_FORMAT = +ddd:mm:ss Y_AXIS_TYPE = hor_text #-------- Basemap Layout Parameters --------- BASEMAP_AXES = WESN BASEMAP_FRAME_RGB = 0/0/0 BASEMAP_TYPE = plain FRAME_PEN = 1.25p FRAME_WIDTH = 0.075i GRID_CROSS_SIZE_PRIMARY = 0i GRID_PEN_PRIMARY = 0.25p GRID_CROSS_SIZE_SECONDARY = 0i GRID_PEN_SECONDARY = 0.5p MAP_SCALE_HEIGHT = 0.075i POLAR_CAP = 85/90 TICK_LENGTH = 0.075i TICK_PEN = 0.5p X_AXIS_LENGTH = 9i Y_AXIS_LENGTH = 6i X_ORIGIN = 1i Y_ORIGIN = 1i UNIX_TIME = FALSE UNIX_TIME_POS = BL/-0.75i/-0.75i UNIX_TIME_FORMAT = %Y %b %d %H:%M:%S #-------- Color System Parameters ----------- COLOR_BACKGROUND = 0/0/0 COLOR_FOREGROUND = 255/255/255 COLOR_NAN = 128/128/128 COLOR_IMAGE = adobe COLOR_MODEL = rgb HSV_MIN_SATURATION = 1 HSV_MAX_SATURATION = 0.1 HSV_MIN_VALUE = 0.3 HSV_MAX_VALUE = 1 #-------- PostScript Parameters ------------- CHAR_ENCODING = ISOLatin1+ DOTS_PR_INCH = 300 N_COPIES = 1 PS_COLOR = rgb PS_IMAGE_COMPRESS = none PS_IMAGE_FORMAT = ascii PS_LINE_CAP = round PS_LINE_JOIN = miter PS_MITER_LIMIT = 0 PS_VERBOSE = FALSE GLOBAL_X_SCALE = 1 GLOBAL_Y_SCALE = 1 #-------- I/O Format Parameters ------------- D_FORMAT = %lg FIELD_DELIMITER = tab GRIDFILE_SHORTHAND = FALSE GRID_FORMAT = nf INPUT_CLOCK_FORMAT = hh:mm:ss INPUT_DATE_FORMAT = yyyy-mm-dd IO_HEADER = FALSE N_HEADER_RECS = 1 OUTPUT_CLOCK_FORMAT = hh:mm:ss OUTPUT_DATE_FORMAT = yyyy-mm-dd OUTPUT_DEGREE_FORMAT = +D XY_TOGGLE = FALSE #-------- Projection Parameters ------------- ELLIPSOID = WGS-84 MAP_SCALE_FACTOR = default MEASURE_UNIT = inch #-------- Calendar/Time Parameters ---------- TIME_FORMAT_PRIMARY = full TIME_FORMAT_SECONDARY = full TIME_EPOCH = 2000-01-01T00:00:00 TIME_IS_INTERVAL = OFF TIME_INTERVAL_FRACTION = 0.5 TIME_LANGUAGE = us TIME_UNIT = d TIME_WEEK_START = Sunday Y2K_OFFSET_YEAR = 1950 #-------- Miscellaneous Parameters ---------- HISTORY = TRUE INTERPOLANT = akima LINE_STEP = 0.01i VECTOR_SHAPE = 0 VERBOSE = FALSE''' _gmt_defaults_by_version['4.3.1'] = r''' # # GMT-SYSTEM 4.3.1 Defaults file # #-------- Plot Media Parameters ------------- PAGE_COLOR = 255/255/255 PAGE_ORIENTATION = portrait PAPER_MEDIA = a4+ #-------- Basemap Annotation Parameters ------ ANNOT_MIN_ANGLE = 20 ANNOT_MIN_SPACING = 0 ANNOT_FONT_PRIMARY = Helvetica ANNOT_FONT_SIZE_PRIMARY = 12p ANNOT_OFFSET_PRIMARY = 0.075i ANNOT_FONT_SECONDARY = Helvetica ANNOT_FONT_SIZE_SECONDARY = 16p ANNOT_OFFSET_SECONDARY = 0.075i DEGREE_SYMBOL = ring HEADER_FONT = Helvetica HEADER_FONT_SIZE = 36p HEADER_OFFSET = 0.1875i LABEL_FONT = Helvetica LABEL_FONT_SIZE = 14p LABEL_OFFSET = 0.1125i OBLIQUE_ANNOTATION = 1 PLOT_CLOCK_FORMAT = hh:mm:ss PLOT_DATE_FORMAT = yyyy-mm-dd PLOT_DEGREE_FORMAT = +ddd:mm:ss Y_AXIS_TYPE = hor_text #-------- Basemap Layout Parameters --------- BASEMAP_AXES = WESN BASEMAP_FRAME_RGB = 0/0/0 BASEMAP_TYPE = plain FRAME_PEN = 1.25p FRAME_WIDTH = 0.075i GRID_CROSS_SIZE_PRIMARY = 0i GRID_PEN_PRIMARY = 0.25p GRID_CROSS_SIZE_SECONDARY = 0i GRID_PEN_SECONDARY = 0.5p MAP_SCALE_HEIGHT = 0.075i POLAR_CAP = 85/90 TICK_LENGTH = 0.075i TICK_PEN = 0.5p X_AXIS_LENGTH = 9i Y_AXIS_LENGTH = 6i X_ORIGIN = 1i Y_ORIGIN = 1i UNIX_TIME = FALSE UNIX_TIME_POS = BL/-0.75i/-0.75i UNIX_TIME_FORMAT = %Y %b %d %H:%M:%S #-------- Color System Parameters ----------- COLOR_BACKGROUND = 0/0/0 COLOR_FOREGROUND = 255/255/255 COLOR_NAN = 128/128/128 COLOR_IMAGE = adobe COLOR_MODEL = rgb HSV_MIN_SATURATION = 1 HSV_MAX_SATURATION = 0.1 HSV_MIN_VALUE = 0.3 HSV_MAX_VALUE = 1 #-------- PostScript Parameters ------------- CHAR_ENCODING = ISOLatin1+ DOTS_PR_INCH = 300 N_COPIES = 1 PS_COLOR = rgb PS_IMAGE_COMPRESS = none PS_IMAGE_FORMAT = ascii PS_LINE_CAP = round PS_LINE_JOIN = miter PS_MITER_LIMIT = 0 PS_VERBOSE = FALSE GLOBAL_X_SCALE = 1 GLOBAL_Y_SCALE = 1 #-------- I/O Format Parameters ------------- D_FORMAT = %lg FIELD_DELIMITER = tab GRIDFILE_SHORTHAND = FALSE GRID_FORMAT = nf INPUT_CLOCK_FORMAT = hh:mm:ss INPUT_DATE_FORMAT = yyyy-mm-dd IO_HEADER = FALSE N_HEADER_RECS = 1 OUTPUT_CLOCK_FORMAT = hh:mm:ss OUTPUT_DATE_FORMAT = yyyy-mm-dd OUTPUT_DEGREE_FORMAT = +D XY_TOGGLE = FALSE #-------- Projection Parameters ------------- ELLIPSOID = WGS-84 MAP_SCALE_FACTOR = default MEASURE_UNIT = inch #-------- Calendar/Time Parameters ---------- TIME_FORMAT_PRIMARY = full TIME_FORMAT_SECONDARY = full TIME_EPOCH = 2000-01-01T00:00:00 TIME_IS_INTERVAL = OFF TIME_INTERVAL_FRACTION = 0.5 TIME_LANGUAGE = us TIME_UNIT = d TIME_WEEK_START = Sunday Y2K_OFFSET_YEAR = 1950 #-------- Miscellaneous Parameters ---------- HISTORY = TRUE INTERPOLANT = akima LINE_STEP = 0.01i VECTOR_SHAPE = 0 VERBOSE = FALSE''' _gmt_defaults_by_version['4.4.0'] = r''' # # GMT-SYSTEM 4.4.0 [64-bit] Defaults file # #-------- Plot Media Parameters ------------- PAGE_COLOR = 255/255/255 PAGE_ORIENTATION = portrait PAPER_MEDIA = a4+ #-------- Basemap Annotation Parameters ------ ANNOT_MIN_ANGLE = 20 ANNOT_MIN_SPACING = 0 ANNOT_FONT_PRIMARY = Helvetica ANNOT_FONT_SIZE_PRIMARY = 14p ANNOT_OFFSET_PRIMARY = 0.075i ANNOT_FONT_SECONDARY = Helvetica ANNOT_FONT_SIZE_SECONDARY = 16p ANNOT_OFFSET_SECONDARY = 0.075i DEGREE_SYMBOL = ring HEADER_FONT = Helvetica HEADER_FONT_SIZE = 36p HEADER_OFFSET = 0.1875i LABEL_FONT = Helvetica LABEL_FONT_SIZE = 14p LABEL_OFFSET = 0.1125i OBLIQUE_ANNOTATION = 1 PLOT_CLOCK_FORMAT = hh:mm:ss PLOT_DATE_FORMAT = yyyy-mm-dd PLOT_DEGREE_FORMAT = +ddd:mm:ss Y_AXIS_TYPE = hor_text #-------- Basemap Layout Parameters --------- BASEMAP_AXES = WESN BASEMAP_FRAME_RGB = 0/0/0 BASEMAP_TYPE = plain FRAME_PEN = 1.25p FRAME_WIDTH = 0.075i GRID_CROSS_SIZE_PRIMARY = 0i GRID_PEN_PRIMARY = 0.25p GRID_CROSS_SIZE_SECONDARY = 0i GRID_PEN_SECONDARY = 0.5p MAP_SCALE_HEIGHT = 0.075i POLAR_CAP = 85/90 TICK_LENGTH = 0.075i TICK_PEN = 0.5p X_AXIS_LENGTH = 9i Y_AXIS_LENGTH = 6i X_ORIGIN = 1i Y_ORIGIN = 1i UNIX_TIME = FALSE UNIX_TIME_POS = BL/-0.75i/-0.75i UNIX_TIME_FORMAT = %Y %b %d %H:%M:%S #-------- Color System Parameters ----------- COLOR_BACKGROUND = 0/0/0 COLOR_FOREGROUND = 255/255/255 COLOR_NAN = 128/128/128 COLOR_IMAGE = adobe COLOR_MODEL = rgb HSV_MIN_SATURATION = 1 HSV_MAX_SATURATION = 0.1 HSV_MIN_VALUE = 0.3 HSV_MAX_VALUE = 1 #-------- PostScript Parameters ------------- CHAR_ENCODING = ISOLatin1+ DOTS_PR_INCH = 300 N_COPIES = 1 PS_COLOR = rgb PS_IMAGE_COMPRESS = lzw PS_IMAGE_FORMAT = ascii PS_LINE_CAP = round PS_LINE_JOIN = miter PS_MITER_LIMIT = 0 PS_VERBOSE = FALSE GLOBAL_X_SCALE = 1 GLOBAL_Y_SCALE = 1 #-------- I/O Format Parameters ------------- D_FORMAT = %lg FIELD_DELIMITER = tab GRIDFILE_SHORTHAND = FALSE GRID_FORMAT = nf INPUT_CLOCK_FORMAT = hh:mm:ss INPUT_DATE_FORMAT = yyyy-mm-dd IO_HEADER = FALSE N_HEADER_RECS = 1 OUTPUT_CLOCK_FORMAT = hh:mm:ss OUTPUT_DATE_FORMAT = yyyy-mm-dd OUTPUT_DEGREE_FORMAT = +D XY_TOGGLE = FALSE #-------- Projection Parameters ------------- ELLIPSOID = WGS-84 MAP_SCALE_FACTOR = default MEASURE_UNIT = inch #-------- Calendar/Time Parameters ---------- TIME_FORMAT_PRIMARY = full TIME_FORMAT_SECONDARY = full TIME_EPOCH = 2000-01-01T00:00:00 TIME_IS_INTERVAL = OFF TIME_INTERVAL_FRACTION = 0.5 TIME_LANGUAGE = us TIME_UNIT = d TIME_WEEK_START = Sunday Y2K_OFFSET_YEAR = 1950 #-------- Miscellaneous Parameters ---------- HISTORY = TRUE INTERPOLANT = akima LINE_STEP = 0.01i VECTOR_SHAPE = 0 VERBOSE = FALSE ''' _gmt_defaults_by_version['4.5.2'] = r''' # # GMT-SYSTEM 4.5.2 [64-bit] Defaults file # #-------- Plot Media Parameters ------------- PAGE_COLOR = white PAGE_ORIENTATION = portrait PAPER_MEDIA = a4+ #-------- Basemap Annotation Parameters ------ ANNOT_MIN_ANGLE = 20 ANNOT_MIN_SPACING = 0 ANNOT_FONT_PRIMARY = Helvetica ANNOT_FONT_SIZE_PRIMARY = 14p ANNOT_OFFSET_PRIMARY = 0.075i ANNOT_FONT_SECONDARY = Helvetica ANNOT_FONT_SIZE_SECONDARY = 16p ANNOT_OFFSET_SECONDARY = 0.075i DEGREE_SYMBOL = ring HEADER_FONT = Helvetica HEADER_FONT_SIZE = 36p HEADER_OFFSET = 0.1875i LABEL_FONT = Helvetica LABEL_FONT_SIZE = 14p LABEL_OFFSET = 0.1125i OBLIQUE_ANNOTATION = 1 PLOT_CLOCK_FORMAT = hh:mm:ss PLOT_DATE_FORMAT = yyyy-mm-dd PLOT_DEGREE_FORMAT = +ddd:mm:ss Y_AXIS_TYPE = hor_text #-------- Basemap Layout Parameters --------- BASEMAP_AXES = WESN BASEMAP_FRAME_RGB = black BASEMAP_TYPE = plain FRAME_PEN = 1.25p FRAME_WIDTH = 0.075i GRID_CROSS_SIZE_PRIMARY = 0i GRID_PEN_PRIMARY = 0.25p GRID_CROSS_SIZE_SECONDARY = 0i GRID_PEN_SECONDARY = 0.5p MAP_SCALE_HEIGHT = 0.075i POLAR_CAP = 85/90 TICK_LENGTH = 0.075i TICK_PEN = 0.5p X_AXIS_LENGTH = 9i Y_AXIS_LENGTH = 6i X_ORIGIN = 1i Y_ORIGIN = 1i UNIX_TIME = FALSE UNIX_TIME_POS = BL/-0.75i/-0.75i UNIX_TIME_FORMAT = %Y %b %d %H:%M:%S #-------- Color System Parameters ----------- COLOR_BACKGROUND = black COLOR_FOREGROUND = white COLOR_NAN = 128 COLOR_IMAGE = adobe COLOR_MODEL = rgb HSV_MIN_SATURATION = 1 HSV_MAX_SATURATION = 0.1 HSV_MIN_VALUE = 0.3 HSV_MAX_VALUE = 1 #-------- PostScript Parameters ------------- CHAR_ENCODING = ISOLatin1+ DOTS_PR_INCH = 300 GLOBAL_X_SCALE = 1 GLOBAL_Y_SCALE = 1 N_COPIES = 1 PS_COLOR = rgb PS_IMAGE_COMPRESS = lzw PS_IMAGE_FORMAT = ascii PS_LINE_CAP = round PS_LINE_JOIN = miter PS_MITER_LIMIT = 0 PS_VERBOSE = FALSE TRANSPARENCY = 0 #-------- I/O Format Parameters ------------- D_FORMAT = %.12lg FIELD_DELIMITER = tab GRIDFILE_FORMAT = nf GRIDFILE_SHORTHAND = FALSE INPUT_CLOCK_FORMAT = hh:mm:ss INPUT_DATE_FORMAT = yyyy-mm-dd IO_HEADER = FALSE N_HEADER_RECS = 1 NAN_RECORDS = pass OUTPUT_CLOCK_FORMAT = hh:mm:ss OUTPUT_DATE_FORMAT = yyyy-mm-dd OUTPUT_DEGREE_FORMAT = D XY_TOGGLE = FALSE #-------- Projection Parameters ------------- ELLIPSOID = WGS-84 MAP_SCALE_FACTOR = default MEASURE_UNIT = inch #-------- Calendar/Time Parameters ---------- TIME_FORMAT_PRIMARY = full TIME_FORMAT_SECONDARY = full TIME_EPOCH = 2000-01-01T00:00:00 TIME_IS_INTERVAL = OFF TIME_INTERVAL_FRACTION = 0.5 TIME_LANGUAGE = us TIME_UNIT = d TIME_WEEK_START = Sunday Y2K_OFFSET_YEAR = 1950 #-------- Miscellaneous Parameters ---------- HISTORY = TRUE INTERPOLANT = akima LINE_STEP = 0.01i VECTOR_SHAPE = 0 VERBOSE = FALSE ''' _gmt_defaults_by_version['4.5.3'] = r''' # # GMT-SYSTEM 4.5.3 (CVS Jun 18 2010 10:56:07) [64-bit] Defaults file # #-------- Plot Media Parameters ------------- PAGE_COLOR = white PAGE_ORIENTATION = portrait PAPER_MEDIA = a4+ #-------- Basemap Annotation Parameters ------ ANNOT_MIN_ANGLE = 20 ANNOT_MIN_SPACING = 0 ANNOT_FONT_PRIMARY = Helvetica ANNOT_FONT_SIZE_PRIMARY = 14p ANNOT_OFFSET_PRIMARY = 0.075i ANNOT_FONT_SECONDARY = Helvetica ANNOT_FONT_SIZE_SECONDARY = 16p ANNOT_OFFSET_SECONDARY = 0.075i DEGREE_SYMBOL = ring HEADER_FONT = Helvetica HEADER_FONT_SIZE = 36p HEADER_OFFSET = 0.1875i LABEL_FONT = Helvetica LABEL_FONT_SIZE = 14p LABEL_OFFSET = 0.1125i OBLIQUE_ANNOTATION = 1 PLOT_CLOCK_FORMAT = hh:mm:ss PLOT_DATE_FORMAT = yyyy-mm-dd PLOT_DEGREE_FORMAT = +ddd:mm:ss Y_AXIS_TYPE = hor_text #-------- Basemap Layout Parameters --------- BASEMAP_AXES = WESN BASEMAP_FRAME_RGB = black BASEMAP_TYPE = plain FRAME_PEN = 1.25p FRAME_WIDTH = 0.075i GRID_CROSS_SIZE_PRIMARY = 0i GRID_PEN_PRIMARY = 0.25p GRID_CROSS_SIZE_SECONDARY = 0i GRID_PEN_SECONDARY = 0.5p MAP_SCALE_HEIGHT = 0.075i POLAR_CAP = 85/90 TICK_LENGTH = 0.075i TICK_PEN = 0.5p X_AXIS_LENGTH = 9i Y_AXIS_LENGTH = 6i X_ORIGIN = 1i Y_ORIGIN = 1i UNIX_TIME = FALSE UNIX_TIME_POS = BL/-0.75i/-0.75i UNIX_TIME_FORMAT = %Y %b %d %H:%M:%S #-------- Color System Parameters ----------- COLOR_BACKGROUND = black COLOR_FOREGROUND = white COLOR_NAN = 128 COLOR_IMAGE = adobe COLOR_MODEL = rgb HSV_MIN_SATURATION = 1 HSV_MAX_SATURATION = 0.1 HSV_MIN_VALUE = 0.3 HSV_MAX_VALUE = 1 #-------- PostScript Parameters ------------- CHAR_ENCODING = ISOLatin1+ DOTS_PR_INCH = 300 GLOBAL_X_SCALE = 1 GLOBAL_Y_SCALE = 1 N_COPIES = 1 PS_COLOR = rgb PS_IMAGE_COMPRESS = lzw PS_IMAGE_FORMAT = ascii PS_LINE_CAP = round PS_LINE_JOIN = miter PS_MITER_LIMIT = 0 PS_VERBOSE = FALSE TRANSPARENCY = 0 #-------- I/O Format Parameters ------------- D_FORMAT = %.12lg FIELD_DELIMITER = tab GRIDFILE_FORMAT = nf GRIDFILE_SHORTHAND = FALSE INPUT_CLOCK_FORMAT = hh:mm:ss INPUT_DATE_FORMAT = yyyy-mm-dd IO_HEADER = FALSE N_HEADER_RECS = 1 NAN_RECORDS = pass OUTPUT_CLOCK_FORMAT = hh:mm:ss OUTPUT_DATE_FORMAT = yyyy-mm-dd OUTPUT_DEGREE_FORMAT = D XY_TOGGLE = FALSE #-------- Projection Parameters ------------- ELLIPSOID = WGS-84 MAP_SCALE_FACTOR = default MEASURE_UNIT = inch #-------- Calendar/Time Parameters ---------- TIME_FORMAT_PRIMARY = full TIME_FORMAT_SECONDARY = full TIME_EPOCH = 2000-01-01T00:00:00 TIME_IS_INTERVAL = OFF TIME_INTERVAL_FRACTION = 0.5 TIME_LANGUAGE = us TIME_UNIT = d TIME_WEEK_START = Sunday Y2K_OFFSET_YEAR = 1950 #-------- Miscellaneous Parameters ---------- HISTORY = TRUE INTERPOLANT = akima LINE_STEP = 0.01i VECTOR_SHAPE = 0 VERBOSE = FALSE ''' # ''' def get_gmt_version( gmtdefaultsbinary, gmthomedir ): args = [ gmtdefaultsbinary ] environ = os.environ.copy() environ['GMTHOME'] = gmthomedir p = subprocess.Popen( args, stderr=subprocess.PIPE, env=environ ) (stdout, stderr) = p.communicate() m = re.search(r'(\d+(\.\d+)*)', stderr) if not m: raise Exception("Can't extract version number from output of %s" % gmtdefaults) return m.group(1) def detect_gmt_installation(): output = subprocess.Popen(["which", "gmtdefaults"], stdout=subprocess.PIPE).communicate()[0].strip() if not output: raise Exception("Can't find GMT installation via PATH") gmtbin = os.path.dirname(output) if 'GMTHOME' not in os.environ: raise Exception('GMTHOME environment variable not set.') gmthome = os.environ['GMTHOME'] gmtversion = get_gmt_version( pjoin(gmtbin,'gmtdefaults'), gmthome ) return gmtversion, gmthome, gmtbin def appropriate_defaults_version(version): avails = sorted( _gmt_defaults_by_version.keys(), cmp=cmp_version ) for iavail, avail in enumerate(avails): c = cmp_version(version,avail) if c == 0: return version elif c == -1: return avails[max(0,iavail-1)] return avails[-1] def gmt_default_config(version): '''Get default GMT configuration dict for given version.''' xversion = appropriate_defaults_version(version) #if not version in _gmt_defaults_by_version: # raise Exception('No GMT defaults for version %s found' % version) gmt_defaults = _gmt_defaults_by_version[xversion] d = {} for line in gmt_defaults.splitlines(): sline = line.strip() if not sline or sline.startswith('#'): continue k,v = sline.split('=',1) d[k.strip()] = v.strip() return d def diff_defaults(v1,v2): d1 = gmt_default_config(v1) d2 = gmt_default_config(v2) for k in d1: if k not in d2: print '%s not in %s' % (k, v2) else: if d1[k] != d2[k]: print '%s %s = %s' % (v1, k, d1[k]) print '%s %s = %s' % (v2, k, d2[k]) for k in d2: if k not in d1: print '%s not in %s' % (k, v1) #diff_defaults('4.5.2', '4.5.3') def setup_gmt_installations(): if not setup_gmt_installations.have_done: if not _gmt_installations: gmtversion, gmthome, gmtbin = detect_gmt_installation() _gmt_installations[gmtversion] = { 'home': gmthome, 'bin': gmtbin } # store defaults as dicts into the gmt installations dicts for version, installation in _gmt_installations.iteritems(): installation['defaults'] = gmt_default_config(version) installation['version'] = version # alias for the newest installed gmt version _gmt_installations['newest'] = _gmt_installations[newest_installed_gmt_version()] setup_gmt_installations.have_done = True setup_gmt_installations.have_done = False _paper_sizes_a = '''A0 2380 3368 A1 1684 2380 A2 1190 1684 A3 842 1190 A4 595 842 A5 421 595 A6 297 421 A7 210 297 A8 148 210 A9 105 148 A10 74 105 B0 2836 4008 B1 2004 2836 B2 1418 2004 B3 1002 1418 B4 709 1002 B5 501 709 archA 648 864 archB 864 1296 archC 1296 1728 archD 1728 2592 archE 2592 3456 flsa 612 936 halfletter 396 612 note 540 720 letter 612 792 legal 612 1008 11x17 792 1224 ledger 1224 792''' _paper_sizes = {} def setup_paper_sizes(): if not _paper_sizes: for line in _paper_sizes_a.splitlines(): k, w, h = line.split() _paper_sizes[k.lower()] = float(w), float(h) def get_paper_size(k): setup_paper_sizes() return _paper_sizes[k.lower().rstrip('+')] def all_paper_sizes(): setup_paper_sizes() return _paper_sizes def make_bbox( width, height, gmt_config, margins=(0.8,0.8,0.8,0.8)): leftmargin, topmargin, rightmargin, bottommargin = margins portrait = gmt_config['PAGE_ORIENTATION'].lower() == 'portrait' paper_size = get_paper_size(gmt_config['PAPER_MEDIA']) if not portrait: paper_size = paper_size[1], paper_size[0] xoffset = (paper_size[0] - (width + leftmargin + rightmargin)) / 2.0 + leftmargin; yoffset = (paper_size[1] - (height + topmargin + bottommargin)) / 2.0 + bottommargin; if portrait: bb1 = int((xoffset - leftmargin)); bb2 = int((yoffset - bottommargin)); bb3 = bb1 + int((width+leftmargin+rightmargin)); bb4 = bb2 + int((height+topmargin+bottommargin)); else: bb1 = int((yoffset - topmargin)); bb2 = int((xoffset - leftmargin)); bb3 = bb1 + int((height+topmargin+bottommargin)); bb4 = bb2 + int((width+leftmargin+rightmargin)); return xoffset, yoffset, (bb1,bb2,bb3,bb4) def check_gmt_installation( installation ): home_dir = installation['home'] bin_dir = installation['bin'] version = installation['version'] for d in home_dir, bin_dir: if not os.path.exists(d): logging.error(('Directory does not exist: %s\n'+ 'Check your GMT installation.') % d) gmtdefaults = pjoin(bin_dir, 'gmtdefaults') versionfound = get_gmt_version( gmtdefaults, home_dir ) if versionfound != version: raise Exception(('Expected GMT version %s but found version %s.\n'+ '(Looking at output of %s)') % (version, versionfound, gmtdefaults)) def get_gmt_installation(version): setup_gmt_installations() if version not in _gmt_installations: logging.warn('GMT version %s not installed, taking version %s instead' % (version, newest_installed_gmt_version())) version = 'newest' installation = dict(_gmt_installations[version]) check_gmt_installation( installation ) return installation def gmtdefaults_as_text(version='newest'): '''Get the built-in gmtdefaults.''' if version not in _gmt_installations: logging.warn('GMT version %s not installed, taking version %s instead' % (version, newest_installed_gmt_version())) version = 'newest' if version == 'newest': version = newest_installed_gmt_version() return _gmt_defaults_by_version[version]
[docs]def savegrd(x,y,z, filename, title=None, naming='xy'): '''Write COARDS compliant netcdf (grd) file.''' cdf = import_pycdf() assert y.size, x.size == z.shape ny, nx = z.shape nc = cdf.CDF(filename, cdf.NC.WRITE|cdf.NC.CREATE|cdf.NC.TRUNC) assert naming in ('xy', 'lonlat') if naming == 'xy': kx, ky = 'x', 'y' else: kx, ky = 'lon', 'lat' nc.definemode() nc.node_offset = 0 if title is not None: nc.title = title nc.Conventions = 'COARDS/CF-1.0' xdim = nc.def_dim(kx, nx) ydim = nc.def_dim(ky, ny) xvar = nc.def_var(kx, cdf.NC.FLOAT, dimids=[kx]) yvar = nc.def_var(ky, cdf.NC.FLOAT, dimids=[ky]) if naming == 'xy': xvar.long_name = kx yvar.long_name = ky else: xvar.long_name = 'longitude' xvar.units = 'degrees_east' yvar.long_name = 'latitude' yvar.units = 'degrees_north' xactual_range = xvar.attr('actual_range') xactual_range.put(cdf.NC.FLOAT, (x.min(), x.max())) yactual_range = yvar.attr('actual_range') yactual_range.put(cdf.NC.FLOAT, (y.min(), y.max())) zvar = nc.def_var('z', cdf.NC.FLOAT, dimids=[ky, kx]) nc.datamode() xvar.put(x.astype(num.float32)) yvar.put(y.astype(num.float32)) zvar.put(z.astype(num.float32)) nc.close()
[docs]def loadgrd(filename): '''Read COARDS compliant netcdf (grd) file.''' cdf = import_pycdf() nc = cdf.CDF(filename, cdf.NC.NOWRITE) vkeys = nc.variables().keys() kx = 'x' ky = 'y' if 'lon' in vkeys: kx = 'lon' if 'lat' in vkeys: ky = 'lat' x = nc.var(kx).get() y = nc.var(ky).get() z = nc.var('z').get() nc.close() return x,y,z
def centers_to_edges(asorted): return (asorted[1:] + asorted[:-1])/2. def nvals(asorted): eps = (asorted[-1]-asorted[0])/asorted.size return num.sum( asorted[1:] - asorted[:-1] >= eps)+1 def guess_vals(asorted): eps = (asorted[-1]-asorted[0])/asorted.size indis = num.nonzero( asorted[1:] - asorted[:-1] >= eps)[0] indis = num.concatenate( (num.array([0]), indis+1, num.array([asorted.size])) ) asum = num.zeros(asorted.size+1) asum[1:] = num.cumsum( asorted ) return (asum[indis[1:]] - asum[indis[:-1]]) / (indis[1:]-indis[:-1]) def blockmean(asorted,b): indis = num.nonzero( asorted[1:] - asorted[:-1])[0] indis = num.concatenate( (num.array([0]), indis+1, num.array([asorted.size])) ) bsum = num.zeros(b.size+1) bsum[1:] = num.cumsum( b ) return asorted[indis[:-1]], (bsum[indis[1:]] - bsum[indis[:-1]]) / (indis[1:]-indis[:-1]) def griddata_regular(x,y,z, xvals, yvals): nx, ny = xvals.size, yvals.size xindi = num.digitize(x, centers_to_edges(xvals)) yindi = num.digitize(y, centers_to_edges(yvals)) zindi = yindi*nx+xindi order = num.argsort(zindi) z = z[order] zindi = zindi[order] zindi, z = blockmean(zindi, z) znew = num.empty(nx*ny, dtype=num.float) znew[:] = num.nan znew[zindi] = z return znew.reshape(ny,nx) def guess_field_size(x_sorted,y_sorted,z=None): critical_fraction = 1./num.e - 0.014*3 xs = x_sorted ys = y_sorted nxs, nys = nvals(xs), nvals(ys) if xs.size == nxs*nys: # exact match return nxs, nys, 0 elif nxs >= xs.size*critical_fraction and nys >= xs.size*critical_fraction : # possibly randomly sampled nxs = int(math.sqrt(x.size)) nys = nxs return nxs, nys, 2 else: return nxs, nys, 1 def griddata_auto(x,y,z): '''Grid tabular XYZ data by binning. This function does some extra work to guess the size of the grid. This should work fine if the input values are already defined on an rectilinear grid, even if data points are missing or duplicated. This routine also tries to detect a random distribution of input data and in that case creates a grid of size sqrt(N) x sqrt(N). The points do not have to be given in any particular order. Grid nodes without data are assigned the NaN value. If multiple data points map to the same grid node, their average is assigned to the grid node. ''' x, y, z = [ num.asarray(X) for X in (x,y,z) ] assert x.size == y.size == z.size xs, ys = num.sort(x),num.sort(y) nx, ny, badness = guess_field_size(xs,ys,z) if badness <= 1: xf = guess_vals(xs) yf = guess_vals(ys) zf = griddata_regular( x,y,z, xf, yf ) else: xf = num.linspace( xs[0],xs[-1], nx) yf = num.linspace( ys[0],ys[-1], ny) zf = griddata_regular( x,y,z, xf, yf ) return xf, yf, zf def tabledata(xf,yf,zf): assert yf.size, xf.size == zf.shape x = num.tile(xf, yf.size) y = num.repeat(yf, xf.size) z = zf.flatten() return x,y,z def double1d(a): a2 = num.empty(a.size*2-1) a2[::2] = a a2[1::2] = (a[:-1] + a[1:])/2. return a2 def double2d(f): f2 = num.empty((f.shape[0]*2-1, f.shape[1]*2-1)) f2[:,:] = num.nan f2[::2,::2] = f f2[1::2,::2] = (f[:-1,:] + f[1:,:])/2. f2[::2,1::2] = (f[:,:-1] + f[:,1:])/2. f2[1::2,1::2] = (f[:-1,:-1] + f[1:,:-1] + f[:-1,1:] + f[1:,1:])/4. diag = f2[1::2,1::2] diagA = (f[:-1,:-1] + f[1:,1:]) / 2. diagB = (f[1:,:-1] + f[:-1,1:]) / 2. f2[1::2,1::2] = num.where(num.isnan(diag),diagA,diag) f2[1::2,1::2] = num.where(num.isnan(diag),diagB,diag) return f2 def doublegrid(x,y,z): x2 = double1d(x) y2 = double1d(y) z2 = double2d(z) return x2,y2,z2
[docs]class Guru: '''Abstract base class providing template interpolation, accessible as attributes. Classes deriving from this one, have to implement a :py:meth:`get_params` method, which is called to get a dict to do ordinary ``"%(key)x"``-substitutions. The deriving class must also provide a dict with the templates.''' def fill(self, templates, **kwargs): params = self.get_params(**kwargs) strings = [ t % params for t in templates ] return strings # hand through templates dict def __getitem__(self, template_name): return self.templates[template_name] def __setitem__(self, template_name, template): self.templates[template_name] = template def __contains__(self, template_name): return template_name in self.templates def __iter__(self): return iter(self.templates) def __len__(self): return len(self.templates) def __delitem__(self, template_name): del(self.templates[template_name]) def _simple_fill(self, template_names, **kwargs): templates = [ self.templates[n] for n in template_names ] return self.fill(templates, **kwargs) def __getattr__(self, template_names): if [ n for n in template_names if n not in self.templates ]: raise AttributeError( template_names ) def f(**kwargs): return self._simple_fill(template_names, **kwargs) return f
def nice_value(x): '''Round `x` to nice value.''' exp = 1.0 sign = 1 if x<0.0: x = -x sign = -1 while x >= 1.0: x /= 10.0 exp *= 10.0 while x < 0.1: x *= 10.0 exp /= 10.0 if x >= 0.75: return sign * 1.0 * exp if x >= 0.375: return sign * 0.5 * exp if x >= 0.225: return sign * 0.25 * exp if x >= 0.15: return sign * 0.2 * exp return sign * 0.1 * exp
[docs]class AutoScaler: '''Tunable 1D autoscaling based on data range. Instances of this class may be used to determine nice minima, maxima and increments for ax annotations, as well as suitable common exponents for notation. The autoscaling process is guided by the following public attributes: .. py:attribute:: approx_ticks Approximate number of increment steps (tickmarks) to generate. .. py:attribute:: mode Mode of operation: one of ``'auto'``, ``'min-max'``, ``'0-max'``, ``'min-0'``, ``'symmetric'`` or ``'off'``. ================ ======================================================= mode description ================ ======================================================= ``'auto'``: Look at data range and choose one of the choices below. ``'min-max'``: Output range is selected to include data range. ``'0-max'``: Output range shall start at zero and end at data max. ``'min-0'``: Output range shall start at data min and end at zero. ``'symmetric'``: Output range shall by symmetric by zero. ``'off'``: Similar to ``'min-max'``, but snap and space are disabled, such that the output range always exactly matches the data range. ================ ======================================================= .. py:attribute:: exp If defined, override automatically determined exponent for notation by the given value. .. py:attribute:: snap If set to True, snap output range to multiples of increment. This parameter has no effect, if mode is set to ``'off'``. .. py:attribute:: inc If defined, override automatically determined tick increment by the given value. .. py:attribute:: space Add some padding to the range. The value given, is the fraction by which the output range is increased on each side. If mode is ``'0-max'`` or ``'min-0'``, the end at zero is kept fixed at zero. This parameter has no effect if mode is set to ``'off'``. .. py:attribute:: exp_factor Exponent of notation is chosen to be a multiple of this value. .. py:attribute:: no_exp_interval: Range of exponent, for which no exponential notation is allowed. ''' # ''' def __init__(self, approx_ticks=7.0, mode='auto', exp=None, snap=False, inc=None, space=0.0, exp_factor=3, no_exp_interval=(-3,5)): '''Create new AutoScaler instance. The parameters are described in the AutoScaler documentation. ''' self.approx_ticks = approx_ticks self.mode = mode self.exp = exp self.snap = snap self.inc = inc self.space = space self.exp_factor = exp_factor self.no_exp_interval = no_exp_interval
[docs] def make_scale(self, data_range, override_mode=None): '''Get nice minimum, maximum and increment for given data range. Returns ``(minimum, maximum, increment)`` or ``(maximum, minimum, -increment)``, depending on whether data_range is ``(data_min, data_max)`` or ``(data_max, data_min)``. If `override_mode` is defined, the mode attribute is temporarily overridden by the given value. ''' data_min = min(data_range) data_max = max(data_range) is_reverse = (data_range[0] > data_range[1]) a = self.mode if self.mode == 'auto': a = self.guess_autoscale_mode( data_min, data_max ) if override_mode is not None: a = override_mode mi, ma = 0, 0 if a == 'off': mi, ma = data_min, data_max elif a == '0-max': mi = 0.0 if data_max > 0.0: ma = data_max else: ma = 1.0 elif a == 'min-0': ma = 0.0 if data_min < 0.0: mi = data_min else: mi = -1.0 elif a == 'min-max': mi, ma = data_min, data_max elif a == 'symmetric': m = max(abs(data_min),abs(data_max)) mi = -m ma = m nmi = mi if (mi != 0. or a == 'min-max') and a != 'off': nmi = mi - self.space*(ma-mi) nma = ma if (ma != 0. or a == 'min-max') and a != 'off': nma = ma + self.space*(ma-mi) mi, ma = nmi, nma if mi == ma and a != 'off': mi -= 1.0 ma += 1.0 # make nice tick increment if self.inc is not None: inc = self.inc else: if self.approx_ticks > 0.: inc = nice_value( (ma-mi)/self.approx_ticks ) else: inc = nice_value( (ma-mi)*10. ) if inc == 0.0: inc = 1.0 # snap min and max to ticks if this is wanted if self.snap and a != 'off': ma = inc * math.ceil(ma/inc) mi = inc * math.floor(mi/inc) if is_reverse: return ma, mi, -inc else: return mi, ma, inc
[docs] def make_exp(self, x): '''Get nice exponent for notation of `x`. For ax annotations, give tick increment as `x`.''' if self.exp is not None: return self.exp x = abs(x) if x == 0.0: return 0 if 10**self.no_exp_interval[0] <= x <= 10**self.no_exp_interval[1]: return 0 return math.floor(math.log10(x)/self.exp_factor)*self.exp_factor
[docs] def guess_autoscale_mode(self, data_min, data_max): '''Guess mode of operation, based on data range. Used to map ``'auto'`` mode to ``'0-max'``, ``'min-0'``, ``'min-max'`` or ``'symmetric'``. ''' a = 'min-max' if data_min >= 0.0: if data_min < data_max/2.: a = '0-max' else: a = 'min-max' if data_max <= 0.0: if data_max > data_min/2.: a = 'min-0' else: a = 'min-max' if data_min < 0.0 and data_max > 0.0: if abs((abs(data_max)-abs(data_min))/(abs(data_max)+abs(data_min))) < 0.5: a = 'symmetric' else: a = 'min-max' return a
[docs]class Ax(AutoScaler): '''Ax description with autoscaling capabilities. The ax is described by the :py:class:`AutoScaler` public attributes, plus the following additional attributes (with default values given in paranthesis): .. py:attribute:: label Ax label (without unit). .. py:attribute:: unit Physical unit of the data attached to this ax. .. py:attribute:: scaled_unit (see below) .. py:attribute:: scaled_unit_factor Scaled physical unit and factor between unit and scaled_unit such that unit = scaled_unit_factor x scaled_unit. (E.g. if unit is 'm' and data is in the range of nanometers, you may want to set the scaled_unit to 'nm' and the scaled_unit_factor to 1e9.) .. py:attribute:: limits If defined, fix range of ax to limits=(min,max). .. py:attribute:: masking If true and if there is a limit on the ax, while calculating ranges, the data points are masked such that data points outside of this axes limits are not used to determine the range of another dependant ax. ''' def __init__(self, label='', unit='', scaled_unit_factor=1., scaled_unit='', limits=None, masking=True, **kwargs): AutoScaler.__init__(self, **kwargs ) self.label = label self.unit = unit self.scaled_unit_factor = scaled_unit_factor self.scaled_unit = scaled_unit self.limits = limits self.masking = masking
[docs] def label_str(self, exp, unit): '''Get label string including the unit and multiplier.''' slabel, sunit, sexp = '', '', '' if self.label: slabel = self.label if unit or exp != 0: if exp != 0: sexp = '\\327 10@+%i@+' % exp sunit = '[ %s %s ]' % (sexp, unit) else: sunit = '[ %s ]' % unit p = [] if slabel: p.append(slabel) if sunit: p.append(sunit) return ' '.join(p)
[docs] def make_params(self, data_range, ax_projection=False, override_mode=None, override_scaled_unit_factor=None): '''Get minimum, maximum, increment and label string for ax display.' Returns minimum, maximum, increment and label string including unit and multiplier for given data range. If `ax_projection` is True, values suitable to be displayed on the ax are returned, e.g. min, max and inc are returned in scaled units. Otherwise the values are returned in the original units, without any scaling applied. ''' sf = self.scaled_unit_factor if override_scaled_unit_factor is not None: sf = override_scaled_unit_factor dr_scaled = [ sf*x for x in data_range ] mi,ma,inc = self.make_scale( dr_scaled, override_mode=override_mode ) if self.inc is not None: inc = self.inc*sf if ax_projection: exp = self.make_exp( inc ) if sf == 1. and override_scaled_unit_factor is None: unit = self.unit else: unit = self.scaled_unit label = self.label_str( exp, unit ) return mi/10**exp, ma/10**exp, inc/10**exp, label else: label = self.label_str( 0, self.unit ) return mi/sf, ma/sf, inc/sf, label
[docs]class ScaleGuru(Guru): '''2D/3D autoscaling and ax annotation facility. Instances of this class provide automatic determination of plot ranges, tick increments and scaled annotations, as well as label/unit handling. It can in particular be used to automatically generate the -R and -B option arguments, which are required for most GMT commands. It extends the functionality of the :py:class:`Ax` and :py:class:`AutoScaler` classes at the level, where it can not be handled anymore by looking at a single dimension of the dataset's data, e.g.: * The ability to impose a fixed aspect ratio between two axes. * Recalculation of data range on non-limited axes, when there are limits imposed on other axes. ''' def __init__(self, data_tuples=None, axes=None, aspect=None, percent_interval=None): if percent_interval is not None: from scipy.stats import scoreatpercentile as scap self.templates = dict( R='-R%(xmin)g/%(xmax)g/%(ymin)g/%(ymax)g', B='-B%(xinc)g:%(xlabel)s:/%(yinc)g:%(ylabel)s:WSen', T='-T%(zmin)g/%(zmax)g/%(zinc)g' ) maxdim = 2 if data_tuples: maxdim = max(maxdim,max( [ len(dt) for dt in data_tuples ] )) else: if axes: maxdim = len(axes) data_tuples = [ ([],)* maxdim ] if axes is not None: self.axes = axes else: self.axes = [ Ax() for i in range(maxdim) ] # sophisticated data-range calculation data_ranges = [None] * maxdim for dt_ in data_tuples: dt = num.asarray(dt_) in_range = True for ax,x in zip(self.axes, dt): if ax.limits and ax.masking: ax_limits = list(ax.limits) if ax_limits[0] is None: ax_limits[0] = -num.inf if ax_limits[1] is None: ax_limits[1] = num.inf in_range = num.logical_and( in_range, num.logical_and(ax_limits[0]<=x, x<=ax_limits[1])) for i,ax,x in zip(range(maxdim),self.axes, dt): if not ax.limits or None in ax.limits: if len(x) >= 1: if in_range is not True: xmasked = num.where(in_range, x, num.NaN) if percent_interval is None: range_this = num.nanmin(xmasked), num.nanmax(xmasked) else: xmasked_finite = num.compress(num.isfinite(xmasked), xmasked) range_this = (scap(xmasked_finite, (100.-percent_interval)/2.), scap(xmasked_finite, 100.-(100.-percent_interval)/2.)) else: if percent_interval is None: range_this = num.nanmin(x), num.nanmax(x) else: xmasked_finite = num.compress(num.isfinite(xmasked), xmasked) range_this = (scap(xmasked_finite, (100.-percent_interval)/2.), scap(xmasked_finite, 100.-(100.-percent_interval)/2.)) else: range_this = (0.,1.) if ax.limits: if ax.limits[0] is not None: range_this = ax.limits[0], max(ax.limits[0], range_this[1]) if ax.limits[1] is not None: range_this = min(ax.limits[1],range_this[0]), ax.limits[1] else: range_this = ax.limits if data_ranges[i] is None and range_this[0] <= range_this[1]: data_ranges[i] = range_this else: mi,ma = range_this if data_ranges[i] is not None: mi = min(data_ranges[i][0],mi) ma = max(data_ranges[i][1],ma) data_ranges[i] = (mi,ma) for i in range(len(data_ranges)): if data_ranges[i] is None or not (num.isfinite(data_ranges[i][0]) and num.isfinite(data_ranges[i][1])): data_ranges[i] = (0.,1.) self.data_ranges = data_ranges self.aspect = aspect
[docs] def get_params(self, ax_projection=False): '''Get dict with output parameters. For each data dimension, ax minimum, maximum, increment and a label string (including unit and exponential factor) are determined. E.g. in for the first dimension the output dict will contain the keys ``'xmin'``, ``'xmax'``, ``'xinc'``, and ``'xlabel'``. Normally, values corresponding to the scaling of the raw data are produced, but if `ax_projection` is ``True``, values which are suitable to be printed on the axes are returned. This means that in the latter case, the :py:attr:`Ax.scaled_unit` and :py:attr:`Ax.scaled_unit_factor` attributes as set on the axes are respected and that a common 10^x factor is factored out and put to the label string. ''' xmi, xma, xinc, xlabel = self.axes[0].make_params( self.data_ranges[0], ax_projection ) ymi, yma, yinc, ylabel = self.axes[1].make_params( self.data_ranges[1], ax_projection ) if len(self.axes) > 2: zmi, zma, zinc, zlabel = self.axes[2].make_params( self.data_ranges[2], ax_projection ) # enforce certain aspect, if needed if self.aspect is not None: xwid = xma-xmi ywid = yma-ymi if ywid < xwid*self.aspect: ymi -= (xwid*self.aspect - ywid)*0.5 yma += (xwid*self.aspect - ywid)*0.5 ymi, yma, yinc, ylabel = self.axes[1].make_params( (ymi, yma), ax_projection, override_mode='off', override_scaled_unit_factor=1. ) elif xwid < ywid/self.aspect: xmi -= (ywid/self.aspect - xwid)*0.5 xma += (ywid/self.aspect - xwid)*0.5 xmi, xma, xinc, xlabel = self.axes[0].make_params( (xmi, xma), ax_projection, override_mode='off', override_scaled_unit_factor=1.) params = dict(xmin=xmi, xmax=xma, xinc=xinc, xlabel=xlabel, ymin=ymi, ymax=yma, yinc=yinc, ylabel=ylabel) if len(self.axes) > 2: params.update( dict(zmin=zmi, zmax=zma, zinc=zinc, zlabel=zlabel) ) return params
class GumSpring: '''Sizing policy implementing a minimal size, plus a desire to grow.''' def __init__(self, minimal=None, grow=None): self.minimal = minimal if grow is None: if minimal is None: self.grow = 1.0 else: self.grow = 0.0 else: self.grow = grow self.value = 1.0 def get_minimal(self): if self.minimal is not None: return self.minimal else: return 0.0 def get_grow(self): return self.grow def set_value(self, value): self.value = value def get_value(self): return self.value def distribute(sizes, grows, space): sizes = list(sizes) gsum = sum(grows) if gsum > 0.0: for i in range(len(sizes)): sizes[i] += space*grows[i]/gsum return sizes
[docs]class Widget(Guru): '''Base class of the gmtpy layout system. The Widget class provides the basic functionality for the nesting and placing of elements on the output page, and maintains the sizing policies of each element. Each of the layouts defined in gmtpy is itself a Widget. Sizing of the widget is controlled by :py:meth:`get_min_size` and :py:meth:`get_grow` which should be overloaded in derived classes. The basic behaviour of a Widget instance is to have a vertical and a horizontal minimum size which default to zero, as well as a vertical and a horizontal desire to grow, represented by floats, which default to 1.0. Additionally an aspect ratio constraint may be imposed on the Widget. After layouting, the widget provides its width, height, x-offset and y-offset in various ways. Via the Guru interface (see :py:class:`Guru` class), templates for the -X, -Y and -J option arguments used by GMT arguments are provided. The defaults are suitable for plotting of linear (-JX) plots. Other projections can be selected by giving an appropriate 'J' template, or by manual construction of the -J option, e.g. by utilizing the :py:meth:`width` and :py:meth:`height` methods. The :py:meth:`bbox` method can be used to create a PostScript bounding box from the widgets border, e.g. for use in the :py:meth:`save` method of :py:class:`GMT` instances. The convention is, that all sizes are given in PostScript points. Conversion factors are provided as constants :py:const:`inch` and :py:const:`cm` in the gmtpy module. ''' def __init__(self, horizontal=None, vertical=None, parent=None): '''Create new widget.''' self.templates = dict( X='-Xa%(xoffset)gp', Y='-Ya%(yoffset)gp', J='-JX%(width)gp/%(height)gp' ) if horizontal is None: self.horizontal = GumSpring() else: self.horizontal = horizontal if vertical is None: self.vertical = GumSpring() else: self.vertical = vertical self.aspect = None self.parent = parent self.dirty = True
[docs] def set_parent(self, parent): '''Set the parent widget. This method should not be called directly. The :py:meth:`set_widget` methods are responsible for calling this. ''' self.parent = parent self.dirtyfy()
[docs] def get_parent(self): '''Get the widgets parent widget.''' return self.parent
[docs] def get_root(self): '''Get the root widget in the layout hierarchy.''' if self.parent is not None: return self.get_parent() else: return self
[docs] def set_horizontal(self, minimal=None, grow=None): '''Set the horizontal sizing policy of the Widget. :param minimal: new minimal width of the widget :param grow: new horizontal grow disire of the widget ''' self.horizontal = GumSpring(minimal, grow) self.dirtyfy()
def get_horizontal(self): return self.horizontal.get_minimal(), self.horizontal.get_grow()
[docs] def set_vertical(self, minimal=None, grow=None): '''Set the horizontal sizing policy of the Widget. :param minimal: new minimal height of the widget :param grow: new vertical grow disire of the widget ''' self.vertical = GumSpring(minimal, grow) self.dirtyfy()
def get_vertical(self): return self.vertical.get_minimal(), self.vertical.get_grow()
[docs] def set_aspect(self, aspect=None): '''Set aspect constraint on the widget. The aspect is given as height divided by width. ''' self.aspect = aspect self.dirtyfy()
[docs] def set_policy(self, minimal=(None,None), grow=(None,None), aspect=None): '''Shortcut to set sizing and aspect constraints in a single method call.''' self.set_horizontal(minimal[0], grow[0]) self.set_vertical(minimal[1], grow[1]) self.set_aspect(aspect)
def get_policy(self): mh, gh = self.get_horizontal() mv, gv = self.get_vertical() return (mh,mv), (gh,gv), self.aspect
[docs] def legalize(self, size, offset): '''Get legal size for widget. Returns: (new_size, new_offset) Given a box as `size` and `offset`, return `new_size` and `new_offset`, such that the widget's sizing and aspect constraints are fullfilled. The returned box is centered on the given input box. ''' sh, sv = size oh, ov = offset shs, svs = Widget.get_min_size(self) ghs, gvs = Widget.get_grow(self) if ghs == 0.0: oh += (sh-shs)/2. sh = shs if gvs == 0.0: ov += (sv-svs)/2. sv = svs if self.aspect is not None: if sh > sv/self.aspect: oh += (sh-sv/self.aspect)/2. sh = sv/self.aspect if sv > sh*self.aspect: ov += (sv-sh*self.aspect)/2. sv = sh*self.aspect return (sh, sv), (oh,ov)
[docs] def get_min_size(self): '''Get minimum size of widget. Used by the layout managers. Should be overloaded in derived classes. ''' mh, mv = self.horizontal.get_minimal(), self.vertical.get_minimal() if self.aspect is not None: if mv == 0.0: return mh, mh*self.aspect elif mh == 0.0: return mv/self.aspect, mv return mh, mv
[docs] def get_grow(self): '''Get widget's desire to grow. Used by the layout managers. Should be overloaded in derived classes. ''' return self.horizontal.get_grow(), self.vertical.get_grow()
[docs] def set_size(self, size, offset): '''Set the widget's current size. Should not be called directly. It is the layout manager's responsibility to call this. ''' (sh,sv),inner_offset = self.legalize(size,offset) self.offset = inner_offset self.horizontal.set_value(sh) self.vertical.set_value(sv) self.dirty = False
def __str__(self): def indent(ind,str): return ('\n'+ind).join(str.splitlines()) size, offset = self.get_size() s = "%s (%g x %g) (%g, %g)\n" % ((self.__class__,) + size + offset) children = self.get_children() if children: s += '\n'.join([ ' '+ indent(' ', str(c)) for c in children ]) return s def policies_debug_str(self): def indent(ind,str): return ('\n'+ind).join(str.splitlines()) mins, grows, aspect = self.get_policy() s = "%s: minimum=(%s,%s), grow=(%s,%s), aspect=%s\n" % ((self.__class__,)+mins+grows+(aspect,)) children = self.get_children() if children: s += '\n'.join([ ' '+ indent(' ', c.policies_debug_str()) for c in children ]) return s
[docs] def get_corners(self, descend=False): '''Get coordinates of the corners of the widget. Returns list with coordinate tuples. If `descend` is True, the returned list will contain corner coordinates of all sub-widgets. ''' self.do_layout() (sh,sv), (oh,ov) = self.get_size() corners = [ (oh,ov), (oh+sh,ov), (oh+sh,ov+sv), (oh,ov+sv) ] if descend: for child in self.get_children(): corners.extend( child.get_corners( descend=True ) ) return corners
[docs] def get_sizes(self): '''Get sizes of this widget and all it's children. Returns a list with size tuples. ''' self.do_layout() sizes = [ self.get_size() ] for child in self.get_children(): sizes.extend( child.get_sizes() ) return sizes
[docs] def do_layout(self): '''Triggers layouting of the widget hierarchy, if needed.''' if self.parent is not None: return self.parent.do_layout() if not self.dirty: return sh, sv = self.get_min_size() gh, gv = self.get_grow() if sh == 0.0 and gh != 0.0: sh = 15.*cm if sv == 0.0 and gv != 0.0: sv = 15.*cm*gv/gh *1./golden_ratio self.set_size((sh,sv),(0.,0.))
[docs] def get_children(self): '''Get sub-widgets contained in this widget. Returns a list of widgets. ''' return []
[docs] def get_size(self): '''Get current size and position of the widget. Triggers layouting and returns ``((width, height), (xoffset, yoffset))`` ''' self.do_layout() return (self.horizontal.get_value(), self.vertical.get_value()), self.offset
[docs] def get_params(self): '''Get current size and position of the widget. Triggers layouting and returns dict with keys ``'xoffset'``, ``'yoffset'``, ``'width'`` and ``'height'``. ''' self.do_layout() (w, h), (xo, yo) = self.get_size() return dict( xoffset=xo, yoffset=yo, width=w, height=h )
[docs] def width(self): '''Get current width of the widget. Triggers layouting and returns width.''' self.do_layout() return self.horizontal.get_value()
[docs] def height(self): '''Get current height of the widget. Triggers layouting and return height.''' self.do_layout() return self.vertical.get_value()
[docs] def bbox(self): '''Get PostScript bounding box for this widget. Triggers layouting and returns values suitable to create PS bounding box, representing the widgets current size and position. ''' self.do_layout() return (self.offset[0], self.offset[1], self.offset[0]+self.width(), self.offset[1]+self.height() )
[docs] def dirtyfy(self): '''Set dirty flag on top level widget in the hierarchy. Called by various methods, to indicate, that the widget hierarchy needs new layouting. ''' if self.parent is not None: self.parent.dirtyfy() self.dirty = True
[docs]class CenterLayout(Widget): '''A layout manager which centers its single child widget. The child widget may be oversized. ''' def __init__(self, horizontal=None, vertical=None): Widget.__init__(self, horizontal, vertical) self.content = Widget(horizontal=GumSpring(grow=1.), vertical=GumSpring(grow=1.), parent=self) def get_min_size(self): shs, svs = Widget.get_min_size(self) sh, sv = self.content.get_min_size() return max(shs,sh), max(svs,sv) def get_grow(self): ghs, gvs = Widget.get_grow(self) gh, gv = self.content.get_grow() return gh*ghs, gv*gvs def set_size(self, size, offset): (sh, sv), (oh, ov) = self.legalize(size, offset) shc, svc = self.content.get_min_size() ghc, gvc = self.content.get_grow() if ghc != 0.: shc = sh if gvc != 0.: svc = sv ohc = oh+(sh-shc)/2. ovc = ov+(sv-svc)/2. self.content.set_size((shc,svc), (ohc,ovc)) Widget.set_size(self,(sh,sv), (oh,ov))
[docs] def set_widget(self, widget=None): '''Set the child widget, which shall be centered.''' if widget is None: widget = Widget() self.content = widget widget.set_parent(self)
def get_widget(self): return self.content def get_children(self): return [ self.content ]
[docs]class FrameLayout(Widget): '''A layout manager containing a center widget sorrounded by four margin widgets. :: +---------------------------+ | top | +---------------------------+ | | | | | left | center | right | | | | | +---------------------------+ | bottom | +---------------------------+ This layout manager does a little bit of extra effort to maintain the aspect constraint of the center widget, if this is set. It does so, by allowing for a bit more flexibility in the sizing of the margins. Two shortcut methods are provided to set the margin sizes in one shot: :py:meth:`set_fixed_margins` and :py:meth:`set_min_margins`. The first sets the margins to fixed sizes, while the second gives them a minimal size and a (neglectably) small desire to grow. Using the latter may be useful when setting an aspect constraint on the center widget, because this way the maximum size of the center widget may be controlled without creating empty spaces between the widgets. ''' def __init__(self, horizontal=None, vertical=None): Widget.__init__(self, horizontal, vertical) mw = 3.*cm self.left = Widget(horizontal=GumSpring(grow=0.15, minimal=mw), parent=self) self.right = Widget(horizontal=GumSpring(grow=0.15, minimal=mw), parent=self) self.top = Widget(vertical=GumSpring(grow=0.15, minimal=mw/golden_ratio), parent=self) self.bottom = Widget(vertical=GumSpring(grow=0.15, minimal=mw/golden_ratio), parent=self) self.center = Widget(horizontal=GumSpring(grow=0.7), vertical=GumSpring(grow=0.7), parent=self)
[docs] def set_fixed_margins(self, left, right, top, bottom): '''Give margins fixed size constraints.''' self.left.set_horizontal(left,0) self.right.set_horizontal(right,0) self.top.set_vertical(top,0) self.bottom.set_vertical(bottom,0)
[docs] def set_min_margins(self, left, right, top, bottom, grow=0.0001): '''Give margins a minimal size and the possibility to grow. The desire to grow is set to a very small number.''' self.left.set_horizontal(left,grow) self.right.set_horizontal(right,grow) self.top.set_vertical(top,grow) self.bottom.set_vertical(bottom,grow)
def get_min_size(self): shs, svs = Widget.get_min_size(self) sl, sr, st, sb, sc = [ x.get_min_size() for x in self.left, self.right, self.top, self.bottom, self.center ] gl, gr, gt, gb, gc = [ x.get_grow() for x in self.left, self.right, self.top, self.bottom, self.center ] shsum = sl[0]+sr[0]+sc[0] svsum = st[1]+sb[1]+sc[1] # prevent widgets from collapsing for s,g in ((sl,gl),(sr,gr),(sc,gc)): if s[0]==0.0 and g[0]!=0.0: shsum += 0.1*cm for s,g in ((st,gt),(sb,gb),(sc,gc)): if s[1]==0.0 and g[1]!=0.0: svsum += 0.1*cm sh = max(shs, shsum) sv = max(svs, svsum) return sh, sv def get_grow(self): ghs, gvs = Widget.get_grow(self) gh = (self.left.get_grow()[0]+self.right.get_grow()[0]+self.center.get_grow()[0])*ghs gv = (self.top.get_grow()[1]+self.bottom.get_grow()[1]+self.center.get_grow()[1])*gvs return gh, gv def set_size(self, size, offset): (sh, sv), (oh, ov) = self.legalize(size, offset) sl, sr, st, sb, sc = [ x.get_min_size() for x in self.left, self.right, self.top, self.bottom, self.center ] gl, gr, gt, gb, gc = [ x.get_grow() for x in self.left, self.right, self.top, self.bottom, self.center ] ah = sh - (sl[0]+sr[0]+sc[0]) av = sv - (st[1]+sb[1]+sc[1]) if ah < 0.0: raise Exception("Container not wide enough for contents (FrameLayout, available: %g cm, needed: %g cm)" % (sh/cm,(sl[0]+sr[0]+sc[0])/cm)) if av < 0.0: raise Exception("Container not high enough for contents (FrameLayout, available: %g cm, needed: %g cm)" % (sv/cm,(st[1]+sb[1]+sc[1])/cm)) slh, srh, sch = distribute( (sl[0], sr[0], sc[0]), (gl[0],gr[0],gc[0]), ah ) stv, sbv, scv = distribute( (st[1], sb[1], sc[1]), (gt[1],gb[1],gc[1]), av ) #if self.center.aspect is not None: # ahm = sh - (sl[0]+sr[0] + scv/self.center.aspect) # avm = sv - (st[1]+sb[1] + sch*self.center.aspect) # if 0.0 < ahm < ah: # slh, srh, sch = distribute( (sl[0], sr[0], scv/self.center.aspect), (gl[0],gr[0],0.0), ahm ) # # elif 0.0 < avm < av: # stv, sbv, scv = distribute( (st[1], sb[1], sch*self.center.aspect), (gt[1],gb[1],0.0), avm ) ah = sh - (slh+srh+sch) av = sv - (stv+sbv+scv) oh += ah/2. ov += av/2. sh -= ah sv -= av self.left.set_size((slh,scv), (oh,ov+sbv)) self.right.set_size((srh,scv), (oh+slh+sch,ov+sbv)) self.top.set_size((sh,stv), (oh,ov+stv+scv)) self.bottom.set_size((sh,sbv), (oh,ov)) self.center.set_size((sch,scv), (oh+slh,ov+sbv)) Widget.set_size(self,(sh,sv), (oh,ov))
[docs] def set_widget(self, which='center', widget=None): '''Set one of the sub-widgets. `which` should be one of ``'left'``, ``'right'``, ``'top'``, ``'bottom'`` or ``'center'``. ''' if widget is None: widget = Widget() if which in ('left', 'right', 'top', 'bottom', 'center'): self.__dict__[which] = widget else: raise Exception('No such sub-widget: %s' % which) widget.set_parent(self)
[docs] def get_widget(self, which='center'): '''Get one of the sub-widgets. `which` should be one of ``'left'``, ``'right'``, ``'top'``, ``'bottom'`` or ``'center'``. ''' if which in ('left', 'right', 'top', 'bottom', 'center'): return self.__dict__[which] else: raise Exception('No such sub-widget: %s' % which)
def get_children(self): return [ self.left, self.right, self.top, self.bottom, self.center ]
[docs]class GridLayout(Widget): '''A layout manager which arranges its sub-widgets in a grid. The grid spacing is flexible and based on the sizing policies of the contained sub-widgets. If an equidistant grid is needed, the sizing policies of the sub-widgets have to be set equally. The height of each row and the width of each column is derived from the sizing policy of the largest sub-widget in the row or column in question. The algorithm is not very sophisticated, so conflicting sizing policies might not be resolved optimally. ''' def __init__(self, nx=2, ny=2, horizontal=None, vertical=None): '''Create new grid layout with `nx` columns and `ny` rows.''' Widget.__init__(self, horizontal, vertical) self.grid = [] for iy in range(ny): row = [] for ix in range(nx): w = Widget(parent=self) row.append(w) self.grid.append(row) def sub_min_sizes_as_array(self): esh = num.array([ [ w.get_min_size()[0] for w in row ] for row in self.grid ], dtype=num.float) esv = num.array([ [ w.get_min_size()[1] for w in row ] for row in self.grid ], dtype=num.float) return esh, esv def sub_grows_as_array(self): egh = num.array([ [ w.get_grow()[0] for w in row ] for row in self.grid ], dtype=num.float) egv = num.array([ [ w.get_grow()[1] for w in row ] for row in self.grid ], dtype=num.float) return egh, egv def get_min_size(self): sh, sv = Widget.get_min_size(self) esh, esv = self.sub_min_sizes_as_array() sh = max(sh, num.sum(esh.max(0))) sv = max(sv, num.sum(esv.max(1))) return sh, sv def get_grow(self): ghs, gvs = Widget.get_grow(self) egh, egv = self.sub_grows_as_array() gh = num.sum(egh.max(0))*ghs gv = num.sum(egv.max(1))*gvs return gh, gv def set_size(self, size, offset): (sh, sv), (oh, ov) = self.legalize(size, offset) esh, esv = self.sub_min_sizes_as_array() egh, egv = self.sub_grows_as_array() # available additional space ah = sh - num.sum(esh.max(0)) av = sv - num.sum(esv.max(1)) if ah < 0.0: raise Exception("Container not wide enough for contents (GridLayout, available: %g cm, needed: %g cm)" % (sh/cm,(num.sum(esh.max(0)))/cm)) if av < 0.0: raise Exception("Container not high enough for contents (GridLayout, available: %g cm, needed: %g cm)" % (sv/cm,(num.sum(esv.max(1)))/cm)) nx, ny = esh.shape # distribute additional space on rows and columns # according to grow weights and minimal sizes gsh = egh.sum(1)[:,num.newaxis].repeat(ny,axis=1) nesh = esh.copy() nesh += num.where( gsh > 0.0, ah*egh/gsh, 0.0 ) nsh = num.maximum(nesh.max(0),esh.max(0)) gsv = egv.sum(0)[num.newaxis,:].repeat(nx,axis=0) nesv = esv.copy() nesv += num.where( gsv > 0.0, av*egv/gsv, 0.0 ) nsv = num.maximum(nesv.max(1),esv.max(1)) ah = sh - sum(nsh) av = sv - sum(nsv) oh += ah/2. ov += av/2. sh -= ah sv -= av # resize child widgets neov = ov + sum(nsv) for row, nesv in zip(self.grid, nsv): neov -= nesv neoh = oh for w, nesh in zip(row,nsh): w.set_size((nesh, nesv),(neoh,neov)) neoh += nesh Widget.set_size(self, (sh,sv), (oh,ov))
[docs] def set_widget(self, ix, iy, widget=None): '''Set one of the sub-widgets. Sets the sub-widget in column `ix` and row `iy`. The indices are counted from zero. ''' if widget is None: widget = Widget() self.grid[iy][ix] = widget widget.set_parent(self)
[docs] def get_widget(self, ix, iy): '''Get one of the sub-widgets. Gets the sub-widget from column `ix` and row `iy`. The indices are counted from zero.''' return self.grid[iy][ix]
def get_children(self): children = [] for row in self.grid: children.extend(row) return children
def aspect_for_projection(*args, **kwargs): gmt = GMT() gmt.psbasemap('-G0', finish=True, *args, **kwargs) l, b, r, t = gmt.bbox() return (t-b)/(r-l) class TableLiner: '''Utility class to turn tables into lines.''' def __init__(self, in_columns=None, in_rows=None): self.in_columns = in_columns self.in_rows = in_rows def __iter__(self): if self.in_columns is not None: for row in izip(*self.in_columns): yield ' '.join([str(x) for x in row])+'\n' if self.in_rows is not None: for row in self.in_rows: yield ' '.join([str(x) for x in row])+'\n' class LineStreamChopper: '''File-like object to buffer data.''' def __init__(self, liner): self.chopsize = None self.liner = liner self.chop_iterator = None self.closed = False def _chopiter(self): buf = StringIO() for line in self.liner: buf.write(line) buflen = buf.tell() if self.chopsize is not None and buflen >= self.chopsize: buf.seek(0) while buf.tell() <= buflen-self.chopsize: yield buf.read(self.chopsize) newbuf = StringIO() newbuf.write(buf.read()) buf.close() buf = newbuf yield(buf.getvalue()) buf.close() def read(self,size=None): if self.closed: raise ValueError('Cannot read from closed LineStreamChopper.') if self.chop_iterator is None: self.chopsize = size self.chop_iterator = self._chopiter() self.chopsize = size try: return self.chop_iterator.next() except StopIteration: return '' def close(self): self.chopsize = None self.chop_iterator = None self.closed = True def flush(self): pass
[docs]class GMT: '''A thin wrapper to GMT command execution. A dict `config` may be given to override some of the default GMT parameters. The `version` argument may be used to select a specific GMT version, which should be used with this GMT instance. The selected version of GMT has to be installed on the system, must be supported by gmtpy and gmtpy must know where to find it. Each instance of this class is used for the task of producing one PS or PDF output file. Output of a series of GMT commands is accumulated in memory and can then be saved as PS or PDF file using the :py:meth:`save` method. GMT commands are accessed as method calls to instances of this class. See the :py:meth:`__getattr__` method for details on how the method's arguments are translated into options and arguments for the GMT command. Associated with each instance of this class, a temporary directory is created, where temporary files may be created, and which is automatically deleted, when the object is destroyed. The :py:meth:`tempfilename` method may be used to get a random filename in the instance's temporary directory. Any .gmtdefaults files are ignored. The GMT class uses a fixed set of defaults, which may be altered via an argument to the constructor. If possible, GMT is run in 'isolation mode', which was introduced with GMT version 4.2.2, by setting `GMT_TMPDIR` to the instance's temporary directory. With earlier versions of GMT, problems may arise with parallel execution of more than one GMT instance. Each instance of the GMT class may pick a specific version of GMT which shall be used, so that, if multiple versions of GMT are installed on the system, different versions of GMT can be used simultaneously such that backward compatibility of the scripts can be maintained. ''' def __init__(self, config=None, kontinue=None, version='newest'): self.installation = get_gmt_installation(version) self.gmt_config = dict(self.installation['defaults']) if config: self.gmt_config.update(config) self.tempdir = tempfile.mkdtemp("","gmtpy-") self.gmt_config_filename = pjoin(self.tempdir, 'gmtdefaults') self.gen_gmt_config_file( self.gmt_config_filename, self.gmt_config ) if kontinue is not None: self.load_unfinished(kontinue) self.needstart = False else: self.output = StringIO() self.needstart = True self.finished = False self.environ = os.environ.copy() self.environ['GMTHOME'] = self.installation['home'] # GMT isolation mode: works only properly with GMT version >= 4.2.2 self.environ['GMT_TMPDIR'] = self.tempdir self.layout = None self.command_log = [] self.keep_temp_dir = False def get_config(self, key): return self.gmt_config[key] def to_points(self, string): if not string: return 0 unit = string[-1] if unit in _units: return float(string[:-1])/_units[unit] else: default_unit = gmt.gmt_config['MEASURE_UNIT'].lower()[0] return float(string)/_units[default_unit] def gen_gmt_config_file(self, config_filename, config ): f = open(config_filename,'w') for k,v in config.iteritems(): f.write( '%s = %s\n' % (k,v) ) f.close() def __del__(self): import shutil if not self.keep_temp_dir: shutil.rmtree(self.tempdir) def _gmtcommand(self, command, *addargs, **kwargs): '''Execute arbitrary GMT command. See docstring in __getattr__ for details. ''' in_stream = kwargs.pop('in_stream', None) in_filename = kwargs.pop('in_filename', None) in_string = kwargs.pop('in_string', None) in_columns = kwargs.pop('in_columns', None) in_rows = kwargs.pop('in_rows', None) out_stream = kwargs.pop('out_stream', None) out_filename = kwargs.pop('out_filename',None) out_discard = kwargs.pop('out_discard', None) finish = kwargs.pop('finish', False) suppressdefaults = kwargs.pop('suppress_defaults', False) config_override = kwargs.pop('config', None) assert(not self.finished) # check for mutual exclusiveness on input and output possibilities assert( 1 >= len([ x for x in [in_stream, in_filename, in_string, in_columns, in_rows] if x is not None ]) ) assert( 1 >= len([ x for x in [out_stream, out_filename, out_discard] if x is not None ]) ) gmt_config_filename = self.gmt_config_filename if config_override: gmt_config = self.gmt_config.copy() gmt_config.update(config_override) gmt_config_override_filename = pjoin(self.tempdir, 'gmtdefaults_override') self.gen_gmt_config_file( gmt_config_override_filename, gmt_config ) gmt_config_filename = gmt_config_override_filename options = [] if out_discard: out_filename = '/dev/null' out_mustclose = False if out_filename is not None: out_mustclose = True out_stream = open(out_filename, 'w') if in_filename is not None: in_stream = open(in_filename, 'r') if in_string is not None: in_stream = StringIO(in_string) if in_columns is not None or in_rows is not None: in_stream = LineStreamChopper( TableLiner(in_columns=in_columns, in_rows=in_rows) ) # convert option arguments to strings for k,v in kwargs.items(): if len(k) > 1: raise Exception('Found illegal keyword argument "%s" while preparing options for command "%s"' % (k, command)) if type(v) is bool: if v: options.append( '-%s' % k ) elif type(v) is tuple or type(v) is list: options.append( '-%s' % k + '/'.join([ str(x) for x in v]) ) else: options.append( '-%s%s' % (k,str(v)) ) # if not redirecting to an external sink, handle -K -O if out_stream is None: if not finish: options.append('-K') else: self.finished = True if not self.needstart: options.append('-O') else: self.needstart = False out_stream = self.output # run the command args = [ pjoin(self.installation['bin'],command) ] if not os.path.isfile( args[0] ): raise Exception('No such file: %s' % args[0] ) args.extend( options ) args.extend( addargs ) if not suppressdefaults: args.append( '+'+gmt_config_filename ) bs = 2048 p = subprocess.Popen( args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, bufsize=bs, env=self.environ ) while True: cr, cw, cx = select( [p.stdout], [p.stdin], [] ) if cr: out_stream.write(p.stdout.read(bs)) if cw: if in_stream is not None: data = in_stream.read(bs) if len(data)==0: break p.stdin.write(data) else: break if not cr and not cw: break p.stdin.close() while True: data = p.stdout.read(bs) if len(data) == 0: break out_stream.write(data) p.stdout.close() retcode = p.wait() if in_stream is not None: in_stream.close() if out_mustclose: out_stream.close() if retcode != 0: self.keep_temp_dir = True raise Exception('Command %s returned an error. While executing command:\n%s' % (command, escape_shell_args(args)) ) self.command_log.append( args )
[docs] def __getattr__(self, command): '''Maps to call self._gmtcommand(command, \*addargs, \*\*kwargs). Execute arbitrary GMT command. Run a GMT command and by default append its postscript output to the output file maintained by the GMT instance on which this method is called. Except for a few keyword arguments listed below, any `kwargs` and `addargs` are converted into command line options and arguments and passed to the GMT command. Numbers in keyword arguments are converted into strings. E.g. ``S=10`` is translated into ``'-S10'``. Tuples of numbers or strings are converted into strings where the elements of the tuples are separated by slashes '/'. E.g. ``R=(10,10,20,20)`` is translated into ``'-R10/10/20/20'``. Options with a boolean argument are only appended to the GMT command, if their values are True. If no output redirection is in effect, the -K and -O options are handled by gmtpy and thus should not be specified. Use ``out_discard=True`` if you don't want -K or -O beeing added, but are not interested in the output. The standard input of the GMT process is fed by data selected with one of the following `in_*` keyword arguments: ============== ============================================================= `in_stream` Data is read from an open file like object. `in_filename` Data is read from the given file. `in_string` String content is dumped to the process. `in_columns` A 2D nested iterable whose elements can be accessed as ``in_columns[icolumn][irow]`` is converted into an ascii table, which is fed to the process. `in_rows` A 2D nested iterable whos elements can be accessed as ``in_rows[irow][icolumn]`` is converted into an ascii table, which is fed to the process. ============== ============================================================= The standard output of the GMT process may be redirected by one of the following options: ============= ============================================================== out_stream Output is fed to an open file like object. out_filename Output is dumped to the given file. out_discard If True, output is dumped to :file:`/dev/null`. ============= ============================================================== Additional keyword arguments: ===================== ============================================================== config Dict with GMT defaults which override the currently active set of defaults exclusively during this call. finish If True, the postscript file, which is maintained by the GMT instance is finished, and no further plotting is allowed. suppress_defaults Suppress appending of the ``'+gmtdefaults'`` option to the command. ===================== ============================================================== ''' def f(*args, **kwargs): return self._gmtcommand(command, *args, **kwargs) return f
[docs] def tempfilename(self, name=None): '''Get filename for temporary file in the private temp directory. If no `name` argument is given, a random name is picked. If `name` is given, returns a path ending in that `name`.''' if not name: name = ''.join( [ random.choice('abcdefghijklmnopqrstuvwxyz') for i in range(10) ]) fn = pjoin(self.tempdir, name) return fn
[docs] def tempfile(self, name=None): '''Create and open a file in the private temp directory.''' fn = self.tempfilename(name) f = open(fn, 'w') return f, fn
def save_unfinished(self, filename): out = open(filename, 'w') out.write(self.output.getvalue()) out.close() def load_unfinished(self, filename): self.output = StringIO() self.finished = False inp = open(filename, 'r') self.output.write(inp.read()) inp.close() def dump(self, ident): filename = self.tempfilename('breakpoint-%s' % ident) self.save_unfinished(filename) def load(self, ident): filename = self.tempfilename('breakpoint-%s' % ident) self.load_unfinished(filename)
[docs] def save(self, filename=None, bbox=None, raster_dpi=150, raster_antialias=True): '''Finish and save figure as PDF, PS or PPM file. If filename ends with ``'.pdf'`` a PDF file is created by piping the GMT output through :program:`epstopdf`. If filename ends with ``'.ppm'`` a PPM file is created by running :program:`epstopdf` and :program:`pdftoppm`. `raster_dpi` specifies the resolution, which is passed to :program:`pdftoppm`. The bounding box is set according to the values given in `bbox`.''' if not self.finished: self.psxy(R=True, J=True, finish=True) if bbox: oldbb = re.compile(r'%%BoundingBox:((\s+\d+){4})') newbb = '%%%%BoundingBox: %s' % ' '.join([ str(int(x)) for x in bbox ]) if filename: tempfn = pjoin(self.tempdir, 'incomplete') out = open(tempfn, 'w') else: out = sys.stdout if bbox: out.write(oldbb.sub(newbb,self.output.getvalue())) else: out.write(self.output.getvalue()) if filename: out.close() if filename.endswith('.ppm'): pdffilename = pjoin(self.tempdir, 'incomplete.pdf') subprocess.call([ 'gmtpy-epstopdf', '--res=300', '--outfile='+pdffilename, tempfn]) interbasefn = pjoin(self.tempdir, 'incomplete') aa = ['-aa', 'no'] if raster_antialias: aa = ['-aa', 'yes'] subprocess.call([ 'pdftoppm', '-r', '%i' % raster_dpi] + aa + [ pdffilename, interbasefn ]) for interfn in [ interbasefn+'-1.ppm', interbasefn+'-000001.ppm' ]: # depends on version of pdftoppm if os.path.exists(interfn): shutil.move(interfn, filename) break elif filename.endswith('.pdf'): subprocess.call([ 'gmtpy-epstopdf', '--res=300', '--outfile='+filename, tempfn]) else: shutil.move(tempfn, filename)
def bbox(self): find_bb = re.compile(r'%%BoundingBox:((\s+\d+){4})') m = find_bb.search(self.output.getvalue()) if m: bb = [ float(x) for x in m.group(1).split() ] return bb else: raise Exception('Cannot find bbox')
[docs] def get_command_log(self): '''Get the command log.''' return self.command_log
def __str__(self): s = '' for com in self.command_log: s += com[0] + "\n " + "\n ".join(com[1:]) + "\n\n" return s
[docs] def page_size_points(self): '''Try to get paper size of output postscript file in points.''' pm = self.gmt_config['PAPER_MEDIA'].lower() if pm.endswith('+') or pm.endswith('-'): pm = pm[:-1] orient = self.gmt_config['PAGE_ORIENTATION'].lower() if pm in all_paper_sizes(): if orient == 'portrait': return get_paper_size(pm) else: return get_paper_size(pm)[1], get_paper_size(pm)[0] m = re.match(r'custom_([0-9.]+)([cimp]?)x([0-9.]+)([cimp]?)', pm) if m: w, uw, h, uh = m.groups() w, h = float(w), float(h) if uw: w *= _units[uw] if uh: h *= _units[uh] if orient == 'portrait': return w,h else: return h,w return None, None
[docs] def default_layout(self, with_palette=False): '''Get a default layout for the output page. One of three different layouts is choosen, depending on the `PAPER_MEDIA <http://gmt.soest.hawaii.edu/gmt/html/man/gmtdefaults.html#PAPER_MEDIA>`_ setting in the GMT configuration dict. If `PAPER_MEDIA` ends with a ``'+'`` (EPS output is selected), a :py:class:`FrameLayout` is centered on the page, whose size is controlled by its center widget's size plus the margins of the :py:class:`FrameLayout`. If `PAPER_MEDIA` indicates, that a custom page size is wanted by starting with ``'Custom_'``, a :py:class:`FrameLayout` is used to fill the complete page. The center widget's size is then controlled by the page's size minus the margins of the :py:class:`FrameLayout`. In any other case, two FrameLayouts are nested, such that the outer layout attaches a 1 cm (printer) margin around the complete page, and the inner FrameLayout's center widget takes up as much space as possible under the constraint, that an aspect ratio of 1/golden_ratio is preserved. In any case, a reference to the innermost :py:class:`FrameLayout` instance is returned. The top-level layout can be accessed by calling :py:meth:`Widget.get_parent` on the returned layout. ''' if self.layout is None: w,h = self.page_size_points() if w is None or h is None: raise Exception("Can't determine page size for layout") pm = self.gmt_config['PAPER_MEDIA'].lower() if with_palette: palette_layout = GridLayout(3,1) spacer = palette_layout.get_widget(1,0) palette_widget = palette_layout.get_widget(2,0) spacer.set_horizontal(0.5*cm) palette_widget.set_horizontal(0.5*cm) if pm.endswith('+'): outer = CenterLayout() outer.set_policy( (w,h), (0.,0.) ) inner = FrameLayout() outer.set_widget( inner ) if with_palette: inner.set_widget('center', palette_layout) widget = palette_layout else: widget = inner.get_widget('center') widget.set_policy((w/golden_ratio, 0.), (0.,0.), aspect=1./golden_ratio ) mw = 3.0*cm inner.set_fixed_margins(mw, mw, mw/golden_ratio, mw/golden_ratio) self.layout = inner elif pm.startswith('custom_'): layout = FrameLayout() layout.set_policy( (w,h), (0.,0.) ) mw = 3.0*cm layout.set_min_margins(mw, mw, mw/golden_ratio, mw/golden_ratio) if with_palette: layout.set_widget('center', palette_layout) self.layout = layout else: outer = FrameLayout() outer.set_policy( (w,h), (0.,0.) ) outer.set_fixed_margins(1.*cm, 1.*cm, 1.*cm, 1.*cm) inner = FrameLayout() outer.set_widget('center', inner) mw = 3.0*cm inner.set_min_margins(mw, mw, mw/golden_ratio, mw/golden_ratio) if with_palette: inner.set_widget('center', palette_layout) widget = palette_layout else: widget = inner.get_widget('center') widget.set_aspect(1./golden_ratio) self.layout = inner return self.layout
[docs] def draw_layout(self, layout): '''Use psxy to draw layout; for debugging''' corners = layout.get_corners(descend=True) rects = num.array(layout.get_sizes(),dtype=num.float) rects_wid = rects[:,0,0] rects_hei = rects[:,0,1] rects_center_x = rects[:,1,0] + rects_wid*0.5 rects_center_y = rects[:,1,1] + rects_hei*0.5 nrects = len(rects) prects = (rects_center_x, rects_center_y, num.arange(nrects), num.zeros(nrects), rects_hei,rects_wid) points = num.array(corners,dtype=num.float) cptfile = self.tempfilename() self.makecpt( C = 'ocean', T = '%g/%g/%g' % (-nrects,nrects,1), Z = True, out_filename = cptfile, suppress_defaults=True) bb = layout.bbox() self.psxy( in_columns = prects, C = cptfile, W = '1p', S = 'J', R = (bb[0],bb[2],bb[1],bb[3]), *layout.XYJ())
def simpleconf_to_ax(conf, axname): c = {} x = axname for x in ('', axname): for k in ('label', 'unit', 'scaled_unit', 'scaled_unit_factor', 'space', 'mode', 'approx_ticks', 'limits', 'masking', 'inc', 'snap'): if x+k in conf: c[k] = conf[x+k] return Ax( **c ) class DensityPlotDef: def __init__(self, data, cpt='ocean', tension=0.7, size=(640,480), contour=False, method='surface', zscaler=None, **extra): self.data = data self.cpt = cpt self.tension = tension self.size = size self.contour = contour self.method = method self.zscaler = zscaler self.extra = extra class TextDef: def __init__(self, data, size=9, justify='MC', fontno=0, offset=(0,0)): self.data = data self.size = size self.justify = justify self.fontno = fontno self.offset = offset class Simple: def __init__(self, gmtconfig=None, **simple_config): self.data = [] self.symbols = [] self.config = copy.deepcopy(simple_config) self.gmtconfig = gmtconfig self.density_plot_defs = [] self.text_defs = [] self.data_x = [] self.symbols_x = [] self.data_y = [] self.symbols_y = [] self.default_config = {} self.set_defaults(width= 15.*cm, height=15.*cm / golden_ratio, margins= (2.*cm, 2.*cm, 2.*cm, 2.*cm), with_palette=False, palette_offset=0.5*cm, palette_width=None, palette_height=None, zlabeloffset=2*cm, draw_layout=False) self.setup_defaults() def setup_defaults(self): pass def set_defaults(self, **kwargs): self.default_config.update(kwargs) def plot(self, data, symbol=''): self.data.append(data) self.symbols.append(symbol) def density_plot(self, data, **kwargs): dpd = DensityPlotDef( data, **kwargs ) self.density_plot_defs.append(dpd) def text(self, data, **kwargs): dpd = TextDef( data, **kwargs ) self.text_defs.append(dpd) def plot_x(self, data, symbol=''): self.data_x.append(data) self.symbols_x.append(symbol) def plot_y(self, data, symbol=''): self.data_y.append(data) self.symbols_y.append(symbol) def set(self, **kwargs): self.config.update(kwargs) def setup_base(self, conf): w = conf.pop('width') h = conf.pop('height') margins = conf.pop('margins') gmtconfig = { 'PAPER_MEDIA':'Custom_%ix%i' % (w,h), } if self.gmtconfig is not None: gmtconfig.update( self.gmtconfig ) gmt = GMT( config=gmtconfig ) layout = gmt.default_layout(with_palette=conf['with_palette']) layout.set_min_margins(*margins) if conf['with_palette']: widget = layout.get_widget().get_widget(0,0) spacer = layout.get_widget().get_widget(1,0) spacer.set_horizontal(conf['palette_offset']) palette_widget = layout.get_widget().get_widget(2,0) if conf['palette_width'] is not None: palette_widget.set_horizontal(conf['palette_width']) if conf['palette_height'] is not None: palette_widget.set_vertical(conf['palette_height']) widget.set_vertical(h-margins[2]-margins[3]-0.03*cm) return gmt, layout, widget, palette_widget else: widget = layout.get_widget() return gmt, layout, widget, None def setup_projection(self, widget, scaler, conf): pass def setup_scaling(self, conf): ndims = 2 if self.density_plot_defs: ndims = 3 axes = [ simpleconf_to_ax(conf,x) for x in 'xyz'[:ndims] ] data_all = [] data_all.extend(self.data) for dsd in self.density_plot_defs: if dsd.zscaler is None: data_all.append(dsd.data) else: data_all.append(dsd.data[:2]) data_chopped = [ ds[:ndims] for ds in data_all ] scaler = ScaleGuru( data_chopped, axes=axes[:ndims] ) self.setup_scaling_plus(scaler, axes[:ndims]) return scaler def setup_scaling_plus(self, scaler, axes): pass def setup_scaling_extra(self, scaler, conf): scaler_x = copy.deepcopy(scaler) scaler_x.data_ranges[1] = (0.,1.) scaler_x.axes[1].mode = 'off' scaler_y = copy.deepcopy(scaler) scaler_y.data_ranges[0] = (0.,1.) scaler_y.axes[0].mode = 'off' return scaler_x, scaler_y def draw_density(self, gmt, widget, scaler): R = scaler.R() par = scaler.get_params() rxyj = R + widget.XYJ() innerticks = False for dpd in self.density_plot_defs: fn_cpt = gmt.tempfilename() if dpd.zscaler is not None: s = dpd.zscaler else: s = scaler gmt.makecpt( C=dpd.cpt, out_filename=fn_cpt, *s.T() ) fn_grid = gmt.tempfilename() fn_mean = gmt.tempfilename() if dpd.method in ('surface', 'triangulate'): gmt.blockmean( in_columns=dpd.data, I='%i+/%i+' % dpd.size, out_filename=fn_mean, *R ) if dpd.method == 'surface': gmt.surface( in_filename=fn_mean, T=dpd.tension, G=fn_grid, I='%i+/%i+' % dpd.size, out_discard=True, *R ) if dpd.method == 'triangulate': gmt.triangulate( in_filename=fn_mean, G=fn_grid, I='%i+/%i+' % dpd.size, out_discard=True, *R ) gmt.grdimage( fn_grid, C=fn_cpt, E='i', S='l', *rxyj ) if dpd.contour: gmt.grdcontour( fn_grid, C=fn_cpt, W='0.5p,black', *rxyj ) innerticks = '0.5p,black' os.remove(fn_grid) os.remove(fn_mean) if dpd.method == 'fillcontour': extra = dict( C=fn_cpt ) extra.update(dpd.extra) gmt.pscontour( in_columns=dpd.data, I=True, *rxyj, **extra) if dpd.method == 'contour': extra = dict( W='0.5p,black', C=fn_cpt ) extra.update(dpd.extra) gmt.pscontour( in_columns=dpd.data, *rxyj, **extra) return fn_cpt, innerticks def draw_basemap(self, gmt, widget, scaler ): gmt.psbasemap( *(widget.JXY() + scaler.RB(ax_projection=True)) ) def draw(self, gmt, widget, scaler): rxyj = scaler.R() + widget.JXY() for dat, sym in zip(self.data,self.symbols): gmt.psxy( in_columns=dat, *(sym.split()+rxyj) ) def post_draw(self, gmt, widget, scaler): pass def pre_draw(self, gmt, widget, scaler): pass def draw_extra(self, gmt, widget, scaler_x, scaler_y): for dat, sym in zip(self.data_x,self.symbols_x): gmt.psxy( in_columns=dat, *(sym.split() + scaler_x.R() + widget.JXY()) ) for dat, sym in zip(self.data_y,self.symbols_y): gmt.psxy( in_columns=dat, *(sym.split() + scaler_y.R() + widget.JXY()) ) def draw_text(self, gmt, widget, scaler): rxyj = scaler.R() + widget.JXY() for td in self.text_defs: x,y = td.data[0:2] text = td.data[-1] size = td.size angle = 0 fontno = td.fontno justify = td.justify gmt.pstext( in_rows=[(x,y,size,angle,fontno,justify,text)], D='%gp/%gp' % td.offset, *rxyj ) def save(self, filename, raster_dpi=150): conf = dict(self.default_config) conf.update(self.config) gmt, layout, widget, palette_widget = self.setup_base(conf) scaler = self.setup_scaling(conf) scaler_x, scaler_y = self.setup_scaling_extra(scaler, conf) self.setup_projection(widget, scaler, conf) aspect = aspect_for_projection( *(widget.J() + scaler.R()) ) widget.set_aspect(aspect) if conf['draw_layout']: gmt.draw_layout(layout) cptfile = None if self.density_plot_defs: cptfile, innerticks = self.draw_density(gmt, widget, scaler) self.pre_draw(gmt, widget, scaler) self.draw(gmt, widget, scaler) self.post_draw(gmt, widget, scaler) self.draw_extra(gmt, widget, scaler_x, scaler_y) self.draw_text(gmt, widget, scaler) self.draw_basemap(gmt, widget, scaler) if palette_widget and cptfile: nice_palette(gmt, palette_widget, scaler, cptfile, innerticks=innerticks, zlabeloffset=conf['zlabeloffset']) gmt.save(filename, raster_dpi=raster_dpi) class LinLinPlot(Simple): pass class LogLinPlot(Simple): def setup_defaults(self): self.set_defaults( xmode='min-max' ) def setup_projection(self, widget, scaler, conf): widget['J'] = '-JX%(width)gpl/%(height)gp' scaler['B'] = '-B2:%(xlabel)s:/%(yinc)g:%(ylabel)s:WSen' class LinLogPlot(Simple): def setup_defaults(self): self.set_defaults( ymode='min-max' ) def setup_projection(self, widget, scaler, conf): widget['J'] = '-JX%(width)gp/%(height)gpl' scaler['B'] = '-B%(xinc)g:%(xlabel)s:/2:%(ylabel)s:WSen' class LogLogPlot(Simple): def setup_defaults(self): self.set_defaults( mode='min-max' ) def setup_projection(self, widget, scaler, conf): widget['J'] = '-JX%(width)gpl/%(height)gpl' scaler['B'] = '-B2:%(xlabel)s:/2:%(ylabel)s:WSen' class AziDistPlot(Simple): def setup_defaults(self): self.set_defaults( height=15.*cm, width=15.*cm, xmode='off', xlimits=(0.,360.), xinc=45.) def setup_projection(self, widget, scaler, conf): widget['J'] = '-JPa%(width)gp' def setup_scaling_plus(self, scaler, axes): scaler['B'] = '-B%(xinc)g:%(xlabel)s:/%(yinc)g:%(ylabel)s:N' class MPlot(Simple): def setup_defaults(self): self.set_defaults(xmode='min-max', ymode='min-max') def setup_projection(self, widget, scaler, conf): par = scaler.get_params() lon0 = (par['xmin'] + par['xmax'])/2. lat0 = (par['ymin'] + par['ymax'])/2. sll = '%g/%g' % (lon0,lat0) widget['J'] = '-JM' + sll + '/%(width)gp' scaler['B'] = '-B%(xinc)gg%(xinc)g:%(xlabel)s:/%(yinc)gg%(yinc)g:%(ylabel)s:WSen' def nice_palette(gmt, widget, scaleguru, cptfile, zlabeloffset=0.8*inch, innerticks=True): par = scaleguru.get_params() par_ax = scaleguru.get_params(ax_projection=True) nz_palette = int(widget.height()/inch * 300) px = num.zeros(nz_palette*2) px[1::2] += 1 pz = num.linspace(par['zmin'],par['zmax'],nz_palette).repeat(2) pdz = pz[2]-pz[0] palgrdfile = gmt.tempfilename() pal_r = (0,1,par['zmin'],par['zmax']) pal_ax_r = (0,1,par_ax['zmin'],par_ax['zmax']) gmt.xyz2grd( G=palgrdfile, R=pal_r, I=(1,pdz), in_columns=(px,pz,pz), out_discard=True) gmt.grdimage( palgrdfile, R=pal_r, C=cptfile, *widget.JXY() ) if isinstance(innerticks, str): tickpen = innerticks gmt.grdcontour( palgrdfile, W=tickpen, R=pal_r, C=cptfile, *widget.JXY() ) negpalwid = '%gp' % -widget.width() if not isinstance(innerticks,str) and innerticks: ticklen = negpalwid else: ticklen = '0p' gmt.psbasemap( R=pal_ax_r, B='4::/%(zinc)g::nsw' % par_ax, config={ 'TICK_LENGTH': ticklen }, *widget.JXY() ) if innerticks: gmt.psbasemap( R=pal_ax_r, B='4::/%(zinc)g::E' % par_ax, config={ 'TICK_LENGTH': '0p' }, *widget.JXY()) else: gmt.psbasemap( R=pal_ax_r, B='4::/%(zinc)g::E' % par_ax, *widget.JXY()) if par_ax['zlabel']: label_font = gmt.gmt_config['LABEL_FONT'] label_font_size = gmt.to_points(gmt.gmt_config['LABEL_FONT_SIZE']) label_offset = zlabeloffset gmt.pstext( R=(0,1,0,2), D="%gp/0p" % label_offset, N=True, in_rows=[(1, 1, label_font_size, -90, label_font, 'CB', par_ax['zlabel'])], *widget.JXY() ) if __name__ == '__main__': examples_dir = 'gmtpy_module_examples' if os.path.exists(examples_dir): shutil.rmtree(examples_dir) os.mkdir(examples_dir) ### Example 1 gmt = GMT() gmt.pscoast( R='g', J='E32/30/8i', B='10g10', D='c', A=10000, S=(114,159,207), G=(233,185,110), W='thinnest') gmt.save(pjoin(examples_dir,'example1.pdf')) gmt.save(pjoin(examples_dir,'example1.ps')) ### Example 2 gmt = GMT(config=dict(PAPER_MEDIA='Custom_%ix%i' % (int(7*inch), int(7*inch)))) gmt.pscoast( R='g', J='E%g/%g/%g/%gi' % (0., 0., 180., 6.), B='0g0', D='c', A=10000, S=(114,159,207), G=(233,185,110), W='thinnest', X='c', Y='c') rows = [] for i in range(5): strike = random.random() * 360. dip = random.random() * 90. rake = random.random() * 360.-180. lat = random.random() * 180.-90. lon = random.random() * 360.-180. rows.append([ lon, lat, 0., strike, dip, rake, 4., 0.,0., '%.3g, %.3g, %.3g' % (strike, dip, rake) ]) gmt.psmeca( R=True, J=True, S='a0.5', in_rows=rows ) gmt.save(pjoin(examples_dir, 'example2.ps')) gmt.save(pjoin(examples_dir, 'example2.pdf')) ### Example 3 conf = { 'PAGE_COLOR':'0/0/0', 'BASEMAP_FRAME_RGB': '255/255/255'} gmt = GMT( config=conf) widget = gmt.default_layout().get_widget() gmt.psbasemap( R=(-5,5,-5,5), J='X%gi/%gi' % (5,5), B='1:Time [s]:/1:Amplitude [m]:WSen', G='100/100/100' ) rows = [] for i in range(11): rows.append((i-5., random.random()*10.-5.)) gmt.psxy( in_rows=rows, R=True, J=True) gmt.save(pjoin(examples_dir, 'example3.pdf')) ### Example 4 x = num.linspace(0.,math.pi*6,1001) y1 = num.sin(x) * 1e-9 y2 = 2.0 * num.cos(x) * 1e-9 xax = Ax( label='Time', unit='s' ) yax = Ax( label='Amplitude', unit='m', scaled_unit='nm', scaled_unit_factor=1e9, approx_ticks=5, space=0.05 ) guru = ScaleGuru( [(x,y1),(x,y2)], axes=(xax,yax) ) gmt = GMT(config={'PAPER_MEDIA':'Custom_%ix%i' % (int(8*inch),int(3*inch))}) layout = gmt.default_layout() widget = layout.get_widget() gmt.draw_layout(layout) gmt.psbasemap( *(widget.JXY() + guru.RB(ax_projection=True)) ) gmt.psxy( in_columns=(x,y1), *(widget.JXY() + guru.R()) ) gmt.psxy( in_columns=(x,y2), *(widget.JXY() + guru.R()) ) gmt.save(pjoin(examples_dir, 'example4.pdf'), bbox=layout.bbox()) gmt.save(pjoin(examples_dir, 'example4.ps'), bbox=layout.bbox()) ### Example 5 x = num.linspace(0.,1e9,1001) y = num.sin(x) axx = Ax( label='Time', unit='s') ayy = Ax( label='Amplitude', scaled_unit= 'cm', scaled_unit_factor=100., space=0.05, approx_ticks=5 ) guru = ScaleGuru( [ (x,y) ], axes=(axx,ayy)) gmt = GMT( config=conf) layout = gmt.default_layout() widget = layout.get_widget() gmt.psbasemap( *(widget.JXY() + guru.RB(ax_projection=True)) ) gmt.psxy( in_columns=(x,y), *(widget.JXY() + guru.R()) ) gmt.save(pjoin(examples_dir, 'example5.pdf'), bbox=layout.bbox()) ### Example 6 gmt = GMT(config={ 'PAPER_MEDIA':'a3'} ) nx, ny = 2,5 grid = GridLayout(nx,ny) layout = gmt.default_layout() layout.set_widget('center', grid) widgets = [] for iy in range(ny): for ix in range(nx): inner = FrameLayout() inner.set_fixed_margins( 1.*cm*golden_ratio, 1.*cm*golden_ratio, 1.*cm, 1.*cm ) grid.set_widget(ix,iy, inner) inner.set_vertical( 0, (iy+1.) ) widgets.append(inner.get_widget('center')) gmt.draw_layout( layout) for widget in widgets: x = num.linspace(0.,10.,5) y = num.random.rand(5) xax = Ax(approx_ticks=4, snap=True) yax = Ax(approx_ticks=4, snap=True) guru = ScaleGuru( [ (x,y) ], axes=(xax,yax) ) gmt.psbasemap( *(widget.JXY() + guru.RB(ax_projection=True)) ) gmt.psxy( in_columns=(x,y), *(widget.JXY() + guru.R()) ) gmt.save(pjoin(examples_dir, 'example6.pdf'), bbox=layout.bbox())